TPTP Problem File: MGT035-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT035-2 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : EPs outcompete FMs in stable environments
% Version : [PM93] axioms.
% English : Efficient producers outcompete first movers past a certain
% time in stable environments.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.50 v9.0.0, 0.45 v8.2.0, 0.43 v8.1.0, 0.26 v7.5.0, 0.37 v7.4.0, 0.35 v7.3.0, 0.33 v7.1.0, 0.25 v7.0.0, 0.27 v6.4.0, 0.40 v6.3.0, 0.27 v6.2.0, 0.30 v6.1.0, 0.57 v6.0.0, 0.60 v5.5.0, 0.75 v5.4.0, 0.80 v5.3.0, 0.72 v5.2.0, 0.62 v5.1.0, 0.65 v5.0.0, 0.57 v4.1.0, 0.54 v4.0.1, 0.45 v3.7.0, 0.50 v3.5.0, 0.55 v3.4.0, 0.58 v3.3.0, 0.64 v3.2.0, 0.77 v3.1.0, 0.82 v2.7.0, 0.92 v2.6.0, 0.89 v2.4.0
% Syntax : Number of clauses : 45 ( 2 unt; 13 nHn; 45 RR)
% Number of literals : 168 ( 20 equ; 106 neg)
% Maximal clause size : 6 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 12 ( 11 usr; 0 prp; 1-4 aty)
% Number of functors : 13 ( 13 usr; 4 con; 0-2 aty)
% Number of variables : 103 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created with tptp2X -f tptp -t clausify:otter MGT035+2.p
%--------------------------------------------------------------------------
cnf(mp_time_point_in_environment_36,axiom,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| in_environment(A,B) ) ).
cnf(mp_environment_not_empty_37,axiom,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| greater(number_of_organizations(A,B),zero) ) ).
cnf(mp_only_members_38,axiom,
( ~ environment(A)
| ~ subpopulation(B,A,C)
| greater(cardinality_at_time(B,C),zero)
| number_of_organizations(A,C) = sum(cardinality_at_time(first_movers,C),cardinality_at_time(efficient_producers,C)) ) ).
cnf(mp_only_members_39,axiom,
( ~ environment(A)
| ~ subpopulation(B,A,C)
| B != efficient_producers
| number_of_organizations(A,C) = sum(cardinality_at_time(first_movers,C),cardinality_at_time(efficient_producers,C)) ) ).
cnf(mp_only_members_40,axiom,
( ~ environment(A)
| ~ subpopulation(B,A,C)
| B != first_movers
| number_of_organizations(A,C) = sum(cardinality_at_time(first_movers,C),cardinality_at_time(efficient_producers,C)) ) ).
cnf(mp_FM_and_EP_organisational_41,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| subpopulation(first_movers,A,B) ) ).
cnf(mp_FM_and_EP_organisational_42,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| subpopulation(efficient_producers,A,B) ) ).
cnf(mp_abc_sum_increase_43,axiom,
( A != sum(B,C)
| ~ constant(A)
| constant(B)
| increases(B)
| decreases(B) ) ).
cnf(mp_abc_sum_increase_44,axiom,
( A != sum(B,C)
| ~ constant(A)
| constant(B)
| increases(B)
| increases(C) ) ).
cnf(mp_abc_sum_increase_45,axiom,
( A != sum(B,C)
| ~ constant(A)
| constant(B)
| decreases(C)
| decreases(B) ) ).
cnf(mp_abc_sum_increase_46,axiom,
( A != sum(B,C)
| ~ constant(A)
| constant(B)
| decreases(C)
| increases(C) ) ).
cnf(mp_abc_sum_increase_47,axiom,
( A != sum(B,C)
| ~ constant(A)
| constant(C)
| increases(B)
| decreases(B) ) ).
cnf(mp_abc_sum_increase_48,axiom,
( A != sum(B,C)
| ~ constant(A)
| constant(C)
| increases(B)
| increases(C) ) ).
cnf(mp_abc_sum_increase_49,axiom,
( A != sum(B,C)
| ~ constant(A)
| constant(C)
| decreases(C)
| decreases(B) ) ).
cnf(mp_abc_sum_increase_50,axiom,
( A != sum(B,C)
| ~ constant(A)
| constant(C)
| decreases(C)
| increases(C) ) ).
cnf(mp_growth_rate_51,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ subpopulation(C,A,B)
| ~ greater(cardinality_at_time(C,B),zero)
| ~ constant(cardinality_at_time(C,B))
| growth_rate(C,B) = zero ) ).
cnf(mp_growth_rate_52,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ subpopulation(C,A,B)
| ~ greater(cardinality_at_time(C,B),zero)
| ~ increases(cardinality_at_time(C,B))
| greater(growth_rate(C,B),zero) ) ).
cnf(mp_growth_rate_53,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ subpopulation(C,A,B)
| ~ greater(cardinality_at_time(C,B),zero)
| ~ decreases(cardinality_at_time(C,B))
| greater(zero,growth_rate(C,B)) ) ).
cnf(mp_positive_number_of_organizations_54,axiom,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| greater(cardinality_at_time(first_movers,B),zero) ) ).
cnf(mp_positive_number_of_organizations_55,axiom,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| greater(cardinality_at_time(efficient_producers,B),zero) ) ).
cnf(mp6_1_56,axiom,
( ~ greater(A,B)
| A != B ) ).
cnf(mp6_2_57,axiom,
( ~ greater(A,B)
| ~ greater(B,A) ) ).
cnf(mp_greater_transitivity_58,axiom,
( ~ greater(A,B)
| ~ greater(B,C)
| greater(A,C) ) ).
cnf(mp_times_in_environment_59,axiom,
( ~ in_environment(A,B)
| ~ in_environment(A,C)
| greater(C,B)
| C = B
| greater(B,C) ) ).
cnf(mp_greater_or_equal_60,axiom,
( ~ greater_or_equal(A,B)
| greater(A,B)
| A = B ) ).
cnf(mp_greater_or_equal_61,axiom,
( ~ greater(A,B)
| greater_or_equal(A,B) ) ).
cnf(mp_greater_or_equal_62,axiom,
( A != B
| greater_or_equal(A,B) ) ).
cnf(mp_equilibrium_63,axiom,
( ~ environment(A)
| ~ greater_or_equal(B,equilibrium(A))
| ~ greater(equilibrium(A),B) ) ).
cnf(d2_64,hypothesis,
( ~ environment(A)
| ~ subpopulations(B,C,A,D)
| ~ greater_or_equal(growth_rate(C,D),zero)
| ~ greater(zero,growth_rate(B,D))
| outcompetes(C,B,D) ) ).
cnf(d2_65,hypothesis,
( ~ environment(A)
| ~ subpopulations(B,C,A,D)
| ~ outcompetes(C,B,D)
| greater_or_equal(growth_rate(C,D),zero) ) ).
cnf(d2_66,hypothesis,
( ~ environment(A)
| ~ subpopulations(B,C,A,D)
| ~ outcompetes(C,B,D)
| greater(zero,growth_rate(B,D)) ) ).
cnf(a4_67,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater(number_of_organizations(A,B),zero)
| ~ greater(equilibrium(A),B)
| decreases(resources(A,B)) ) ).
cnf(a4_68,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater(number_of_organizations(A,B),zero)
| greater(equilibrium(A),B)
| constant(resources(A,B)) ) ).
cnf(a5_69,hypothesis,
( ~ environment(A)
| ~ stable(A)
| in_environment(A,sk1(A)) ) ).
cnf(a5_70,hypothesis,
( ~ environment(A)
| ~ stable(A)
| greater_or_equal(sk1(A),equilibrium(A)) ) ).
cnf(a7_71,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ decreases(resources(A,B))
| ~ decreases(number_of_organizations(A,B)) ) ).
cnf(a7_72,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ constant(resources(A,B))
| constant(number_of_organizations(A,B)) ) ).
cnf(a11_73,hypothesis,
( ~ environment(A)
| ~ subpopulation(B,A,C)
| ~ greater(cardinality_at_time(B,C),zero)
| B = efficient_producers
| B = first_movers ) ).
cnf(l1_74,hypothesis,
( ~ environment(A)
| ~ stable(A)
| in_environment(A,sk2(A)) ) ).
cnf(l1_75,hypothesis,
( ~ environment(A)
| ~ stable(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,sk2(A))
| greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B)) ) ).
cnf(prove_t4_76,negated_conjecture,
environment(sk3) ).
cnf(prove_t4_77,negated_conjecture,
stable(sk3) ).
cnf(prove_t4_78,negated_conjecture,
( ~ in_environment(sk3,A)
| subpopulations(first_movers,efficient_producers,sk3,sk4(A)) ) ).
cnf(prove_t4_79,negated_conjecture,
( ~ in_environment(sk3,A)
| greater_or_equal(sk4(A),A) ) ).
cnf(prove_t4_80,negated_conjecture,
( ~ in_environment(sk3,A)
| ~ outcompetes(efficient_producers,first_movers,sk4(A)) ) ).
%--------------------------------------------------------------------------