TPTP Problem File: MGT035-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT035-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : EPs outcompete FMs in stable environments
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : Efficient producers outcompete first movers past a certain
% time in stable environments.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.15 v8.2.0, 0.10 v8.1.0, 0.05 v7.5.0, 0.16 v7.4.0, 0.12 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.09 v6.2.0, 0.10 v6.1.0, 0.21 v6.0.0, 0.30 v5.5.0, 0.45 v5.3.0, 0.39 v5.2.0, 0.31 v5.1.0, 0.35 v5.0.0, 0.43 v4.1.0, 0.31 v4.0.1, 0.09 v4.0.0, 0.18 v3.7.0, 0.20 v3.5.0, 0.18 v3.4.0, 0.42 v3.3.0, 0.43 v3.2.0, 0.62 v3.1.0, 0.45 v2.7.0, 0.58 v2.6.0, 0.44 v2.4.0
% Syntax : Number of clauses : 25 ( 2 unt; 10 nHn; 25 RR)
% Number of literals : 98 ( 11 equ; 55 neg)
% Maximal clause size : 6 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-4 aty)
% Number of functors : 9 ( 9 usr; 4 con; 0-2 aty)
% Number of variables : 48 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created with tptp2X -f tptp -t clausify:otter MGT035+1.p
%--------------------------------------------------------------------------
cnf(mp_greater_transitivity_22,axiom,
( ~ greater(A,B)
| ~ greater(B,C)
| greater(A,C) ) ).
cnf(mp_times_in_environment_23,axiom,
( ~ in_environment(A,B)
| ~ in_environment(A,C)
| greater(C,B)
| C = B
| greater(B,C) ) ).
cnf(mp_greater_or_equal_24,axiom,
( ~ greater_or_equal(A,B)
| greater(A,B)
| A = B ) ).
cnf(mp_greater_or_equal_25,axiom,
( ~ greater(A,B)
| greater_or_equal(A,B) ) ).
cnf(mp_greater_or_equal_26,axiom,
( A != B
| greater_or_equal(A,B) ) ).
cnf(d2_27,hypothesis,
( ~ environment(A)
| ~ subpopulations(B,C,A,D)
| ~ greater_or_equal(growth_rate(C,D),zero)
| ~ greater(zero,growth_rate(B,D))
| outcompetes(C,B,D) ) ).
cnf(d2_28,hypothesis,
( ~ environment(A)
| ~ subpopulations(B,C,A,D)
| ~ outcompetes(C,B,D)
| greater_or_equal(growth_rate(C,D),zero) ) ).
cnf(d2_29,hypothesis,
( ~ environment(A)
| ~ subpopulations(B,C,A,D)
| ~ outcompetes(C,B,D)
| greater(zero,growth_rate(B,D)) ) ).
cnf(l6_30,hypothesis,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,equilibrium(A))
| growth_rate(first_movers,B) = zero
| greater(growth_rate(first_movers,B),zero)
| greater(growth_rate(efficient_producers,B),zero) ) ).
cnf(l6_31,hypothesis,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,equilibrium(A))
| growth_rate(first_movers,B) = zero
| greater(growth_rate(first_movers,B),zero)
| greater(zero,growth_rate(first_movers,B)) ) ).
cnf(l6_32,hypothesis,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,equilibrium(A))
| growth_rate(first_movers,B) = zero
| greater(zero,growth_rate(efficient_producers,B))
| greater(growth_rate(efficient_producers,B),zero) ) ).
cnf(l6_33,hypothesis,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,equilibrium(A))
| growth_rate(first_movers,B) = zero
| greater(zero,growth_rate(efficient_producers,B))
| greater(zero,growth_rate(first_movers,B)) ) ).
cnf(l6_34,hypothesis,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,equilibrium(A))
| growth_rate(efficient_producers,B) = zero
| greater(growth_rate(first_movers,B),zero)
| greater(growth_rate(efficient_producers,B),zero) ) ).
cnf(l6_35,hypothesis,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,equilibrium(A))
| growth_rate(efficient_producers,B) = zero
| greater(growth_rate(first_movers,B),zero)
| greater(zero,growth_rate(first_movers,B)) ) ).
cnf(l6_36,hypothesis,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,equilibrium(A))
| growth_rate(efficient_producers,B) = zero
| greater(zero,growth_rate(efficient_producers,B))
| greater(growth_rate(efficient_producers,B),zero) ) ).
cnf(l6_37,hypothesis,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,equilibrium(A))
| growth_rate(efficient_producers,B) = zero
| greater(zero,growth_rate(efficient_producers,B))
| greater(zero,growth_rate(first_movers,B)) ) ).
cnf(l1_38,hypothesis,
( ~ environment(A)
| ~ stable(A)
| in_environment(A,sk1(A)) ) ).
cnf(l1_39,hypothesis,
( ~ environment(A)
| ~ stable(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,sk1(A))
| greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B)) ) ).
cnf(a4_40,hypothesis,
( ~ environment(A)
| ~ stable(A)
| in_environment(A,sk2(A)) ) ).
cnf(a4_41,hypothesis,
( ~ environment(A)
| ~ stable(A)
| greater_or_equal(sk2(A),equilibrium(A)) ) ).
cnf(prove_t4_42,negated_conjecture,
environment(sk3) ).
cnf(prove_t4_43,negated_conjecture,
stable(sk3) ).
cnf(prove_t4_44,negated_conjecture,
( ~ in_environment(sk3,A)
| subpopulations(first_movers,efficient_producers,sk3,sk4(A)) ) ).
cnf(prove_t4_45,negated_conjecture,
( ~ in_environment(sk3,A)
| greater_or_equal(sk4(A),A) ) ).
cnf(prove_t4_46,negated_conjecture,
( ~ in_environment(sk3,A)
| ~ outcompetes(efficient_producers,first_movers,sk4(A)) ) ).
%--------------------------------------------------------------------------