TPTP Problem File: MGT033-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT033-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : Selection favors FMs above EPs until EPs appear
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : Selection favors first movers above efficient producers
% until the appearance of efficient producers.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.00 v7.4.0, 0.09 v7.3.0, 0.00 v6.1.0, 0.11 v6.0.0, 0.00 v5.2.0, 0.10 v5.0.0, 0.11 v4.1.0, 0.14 v4.0.1, 0.20 v4.0.0, 0.00 v3.5.0, 0.33 v3.4.0, 0.25 v3.3.0, 0.00 v3.2.0, 0.20 v3.1.0, 0.00 v2.6.0, 0.14 v2.5.0, 0.33 v2.4.0
% Syntax : Number of clauses : 20 ( 5 unt; 1 nHn; 20 RR)
% Number of literals : 57 ( 6 equ; 38 neg)
% Maximal clause size : 6 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-3 aty)
% Number of functors : 12 ( 12 usr; 7 con; 0-2 aty)
% Number of variables : 32 ( 1 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : Created with tptp2X -f tptp -t clausify:otter MGT033+1.p
%--------------------------------------------------------------------------
cnf(mp2_favour_members_24,axiom,
( ~ environment(A)
| ~ subpopulation(B,A,C)
| ~ subpopulation(D,A,C)
| ~ greater(cardinality_at_time(B,C),zero)
| cardinality_at_time(D,C) != zero
| selection_favors(B,D,C) ) ).
cnf(mp_not_present_before_appearance_25,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater(appear(C,A),B)
| cardinality_at_time(C,B) = zero ) ).
cnf(mp_positive_sum_means_members_26,axiom,
( ~ environment(A)
| ~ greater(number_of_organizations(A,B),zero)
| subpopulation(sk1(B,A),A,B) ) ).
cnf(mp_positive_sum_means_members_27,axiom,
( ~ environment(A)
| ~ greater(number_of_organizations(A,B),zero)
| greater(cardinality_at_time(sk1(B,A),B),zero) ) ).
cnf(mp_zero_is_not_positive_28,axiom,
( cardinality_at_time(A,t) != zero
| ~ greater(cardinality_at_time(A,B),zero) ) ).
cnf(mp_positive_and_sustains_29,axiom,
( ~ environment(A)
| ~ greater(number_of_organizations(A,B),zero)
| in_environment(A,B) ) ).
cnf(mp_durations_are_time_intervals_30,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ in_environment(A,C)
| ~ greater_or_equal(C,D)
| ~ greater_or_equal(D,B)
| in_environment(A,D) ) ).
cnf(mp_opening_time_in_duration_31,axiom,
( ~ environment(A)
| in_environment(A,start_time(A)) ) ).
cnf(mp_no_FM_before_opening_32,axiom,
( ~ environment(A)
| greater_or_equal(appear(first_movers,A),start_time(A)) ) ).
cnf(mp_subpopulations_33,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| subpopulation(first_movers,A,B) ) ).
cnf(mp_subpopulations_34,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| subpopulation(efficient_producers,A,B) ) ).
cnf(mp_FM_means_organisations_35,axiom,
( ~ environment(A)
| ~ in_environment(A,appear(first_movers,A))
| in_environment(A,appear(an_organisation,A)) ) ).
cnf(a1_36,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater_or_equal(B,appear(an_organisation,A))
| greater(number_of_organizations(A,B),zero) ) ).
cnf(a9_37,hypothesis,
( ~ environment(A)
| ~ subpopulation(B,A,C)
| ~ greater(cardinality_at_time(B,C),zero)
| B = efficient_producers
| B = first_movers ) ).
cnf(l13_38,hypothesis,
( ~ environment(A)
| ~ in_environment(A,appear(an_organisation,A))
| appear(an_organisation,A) = appear(first_movers,A) ) ).
cnf(prove_t2_39,negated_conjecture,
environment(sk2) ).
cnf(prove_t2_40,negated_conjecture,
in_environment(sk2,sk3) ).
cnf(prove_t2_41,negated_conjecture,
greater_or_equal(sk3,appear(first_movers,sk2)) ).
cnf(prove_t2_42,negated_conjecture,
greater(appear(efficient_producers,sk2),sk3) ).
cnf(prove_t2_43,negated_conjecture,
~ selection_favors(first_movers,efficient_producers,sk3) ).
%--------------------------------------------------------------------------