TPTP Problem File: MGT033+2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT033+2 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Selection favors FMs above EPs until EPs appear
% Version : [PM93] axioms.
% English : Selection favors first movers above efficient producers
% until the appearance of efficient producers.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% Source : [PM93]
% Names : THEOREM 2 [PM93]
% : T2 [PB+94]
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.1.0, 0.09 v6.0.0, 0.08 v5.5.0, 0.00 v4.1.0, 0.60 v4.0.1, 0.40 v4.0.0, 0.25 v3.7.0, 0.00 v3.5.0, 0.67 v3.4.0, 0.00 v3.3.0, 0.33 v3.2.0, 0.00 v3.1.0, 0.33 v2.6.0, 0.50 v2.5.0, 0.67 v2.4.0, 0.00 v2.1.0
% Syntax : Number of formulae : 18 ( 0 unt; 0 def)
% Number of atoms : 62 ( 6 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 45 ( 1 ~; 2 |; 24 &)
% ( 1 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-3 aty)
% Number of functors : 10 ( 10 usr; 6 con; 0-2 aty)
% Number of variables : 38 ( 37 !; 1 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP2. Selection favors organizational sets with members to sets without
%----members.
fof(mp2_favour_members,axiom,
! [E,S1,S2,T] :
( ( environment(E)
& subpopulation(S1,E,T)
& subpopulation(S2,E,T)
& greater(cardinality_at_time(S1,T),zero)
& cardinality_at_time(S2,T) = zero )
=> selection_favors(S1,S2,T) ) ).
%----MP. If the number of organizations is positive in the environment,
%----then there is a non-empty subpopulation in the environment.
fof(mp_number_mean_non_empty,axiom,
! [E,T] :
( ( environment(E)
& greater(number_of_organizations(E,T),zero) )
=> ? [S] :
( subpopulation(S,E,T)
& greater(cardinality_at_time(S,T),zero) ) ) ).
%----MP. If the number of elements in x is zero, then it is not positive.
fof(mp_zero_is_not_positive,axiom,
! [X,T] :
( cardinality_at_time(X,t) = zero
=> ~ greater(cardinality_at_time(X,T),zero) ) ).
%----MP. Object x is not present in the environment before it appears in
%----the environment.
fof(mp_not_present_before_appearance,axiom,
! [E,X,T] :
( ( environment(E)
& in_environment(E,T)
& greater(appear(X,E),T) )
=> cardinality_at_time(X,T) = zero ) ).
%----MP. If the number of organizations is positive in an environment at
%----time-point t, then t occurs during the environment sustains.
fof(mp_positive_and_sustains,axiom,
! [E,T] :
( ( environment(E)
& greater(number_of_organizations(E,T),zero) )
=> in_environment(E,T) ) ).
%----MP. The durations of environments are time-intervals.
fof(mp_durations_are_time_intervals,axiom,
! [E,T1,T2,T] :
( ( environment(E)
& in_environment(E,T1)
& in_environment(E,T2)
& greater_or_equal(T2,T)
& greater_or_equal(T,T1) )
=> in_environment(E,T) ) ).
%----MP. The opening time of the environment belongs to the environment's
%----duration.
fof(mp_opening_time_in_duration,axiom,
! [E] :
( environment(E)
=> in_environment(E,start_time(E)) ) ).
%----MP. FM cannot appear in an environment before it opens.
fof(mp_no_FM_before_opening,axiom,
! [E] :
( environment(E)
=> greater_or_equal(appear(first_movers,E),start_time(E)) ) ).
%----MP. If FM appear in the environment, then some organizations appear in
%----the environment.
fof(mp_FM_means_organisations,axiom,
! [E] :
( ( environment(E)
& in_environment(E,appear(first_movers,E)) )
=> in_environment(E,appear(an_organisation,E)) ) ).
%----MP. The appearence of FM cannot precede the appearence of the first
%----organization in the environment.
fof(mp_FM_not_precede_first,axiom,
! [E] :
( environment(E)
=> greater_or_equal(appear(first_movers,E),appear(an_organisation,E)) ) ).
%----MP. The number of organizations is positive in the environment when
%----they appear in this environment.
fof(mp_positive_number_when_appear,axiom,
! [E] :
( environment(E)
=> greater(number_of_organizations(e,appear(an_organisation,E)),zero) ) ).
%----MP. First movers and efficient producers are subpopulations.
fof(mp_subpopulations,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( subpopulation(first_movers,E,T)
& subpopulation(efficient_producers,E,T) ) ) ).
%----MP. inequality
fof(mp_greater_transitivity,axiom,
! [X,Y,Z] :
( ( greater(X,Y)
& greater(Y,Z) )
=> greater(X,Z) ) ).
%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
<=> ( greater(X,Y)
| X = Y ) ) ).
%----A1. A resource configuration does not remain empty indefinitely.
fof(a1,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater_or_equal(T,appear(an_organisation,E)) )
=> greater(number_of_organizations(E,T),zero) ) ).
%----A3. First movers appear sooner in the environment, than efficient
%----producers.
fof(a3,hypothesis,
! [E] :
( environment(E)
=> greater(appear(efficient_producers,e),appear(first_movers,E)) ) ).
%----A11. The population contains only first movers and efficient
%----producers.
fof(a11,hypothesis,
! [E,X,T] :
( ( environment(E)
& subpopulation(X,E,T)
& greater(cardinality_at_time(X,T),zero) )
=> ( X = efficient_producers
| X = first_movers ) ) ).
%----GOAL: T2. Selection favors first movers above efficient producers
%----between the appearence of first movers and the appearence of efficient
%----producers.
fof(prove_t2,conjecture,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater_or_equal(T,appear(first_movers,E))
& greater(appear(efficient_producers,E),T) )
=> selection_favors(first_movers,efficient_producers,T) ) ).
%--------------------------------------------------------------------------