TPTP Problem File: MGT033+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT033+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Selection favors FMs above EPs until EPs appear
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : Selection favors first movers above efficient producers
% until the appearance of efficient producers.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.1.0, 0.09 v6.0.0, 0.00 v5.5.0, 0.12 v5.4.0, 0.00 v4.1.0, 0.40 v4.0.0, 0.25 v3.7.0, 0.00 v3.5.0, 0.33 v3.4.0, 0.00 v3.1.0, 0.17 v2.7.0, 0.33 v2.6.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.00 v2.1.0
% Syntax : Number of formulae : 14 ( 0 unt; 0 def)
% Number of atoms : 53 ( 6 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 40 ( 1 ~; 1 |; 24 &)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-3 aty)
% Number of functors : 9 ( 9 usr; 5 con; 0-2 aty)
% Number of variables : 31 ( 30 !; 1 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Problem axioms
%----MP2. Selection favors organizational sets with members to set without
%----members.
fof(mp2_favour_members,axiom,
! [E,S1,S2,T] :
( ( environment(E)
& subpopulation(S1,E,T)
& subpopulation(S2,E,T)
& greater(cardinality_at_time(S1,T),zero)
& cardinality_at_time(S2,T) = zero )
=> selection_favors(S1,S2,T) ) ).
%----MP. Object x is not present in the environment before it appears in
%----the environment.
fof(mp_not_present_before_appearance,axiom,
! [E,X,T] :
( ( environment(E)
& in_environment(E,T)
& greater(appear(X,E),T) )
=> cardinality_at_time(X,T) = zero ) ).
%----MP. If the sum of organizations in an environment is positive, then
%----some of the constituent organizational groups must have members.
fof(mp_positive_sum_means_members,axiom,
! [E,T] :
( ( environment(E)
& greater(number_of_organizations(E,T),zero) )
=> ? [X] :
( subpopulation(X,E,T)
& greater(cardinality_at_time(X,T),zero) ) ) ).
%----MP. If the number of elements in x is zero, then it is not positive.
fof(mp_zero_is_not_positive,axiom,
! [X,T] :
( cardinality_at_time(X,t) = zero
=> ~ greater(cardinality_at_time(X,T),zero) ) ).
%----MP. If the number of organizations is positive in an environment at
%----time-point t, then t occurs during the environment sustains.
fof(mp_positive_and_sustains,axiom,
! [E,T] :
( ( environment(E)
& greater(number_of_organizations(E,T),zero) )
=> in_environment(E,T) ) ).
%----MP. The durations of environments are time-intervals.
fof(mp_durations_are_time_intervals,axiom,
! [E,T1,T2,T] :
( ( environment(E)
& in_environment(E,T1)
& in_environment(E,T2)
& greater_or_equal(T2,T)
& greater_or_equal(T,T1) )
=> in_environment(E,T) ) ).
%----MP. The opening time of the environment belongs to the environment's
%----duration.
fof(mp_opening_time_in_duration,axiom,
! [E] :
( environment(E)
=> in_environment(E,start_time(E)) ) ).
%----MP. FM cannot appear in an environment before it opens.
fof(mp_no_FM_before_opening,axiom,
! [E] :
( environment(E)
=> greater_or_equal(appear(first_movers,E),start_time(E)) ) ).
%----MP. First movers and efficient producers are subpopulations.
fof(mp_subpopulations,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( subpopulation(first_movers,E,T)
& subpopulation(efficient_producers,E,T) ) ) ).
%----MP. If FM appear in the environment, then some organizations appear in
%----the environment.
fof(mp_FM_means_organisations,axiom,
! [E] :
( ( environment(E)
& in_environment(E,appear(first_movers,E)) )
=> in_environment(E,appear(an_organisation,E)) ) ).
%----A1. The environment has a positive carrying capacity
fof(a1,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater_or_equal(T,appear(an_organisation,E)) )
=> greater(number_of_organizations(E,T),zero) ) ).
%----A9. The population contains only first movers and efficient
%----producers.
fof(a9,hypothesis,
! [E,X,T] :
( ( environment(E)
& subpopulation(X,E,T)
& greater(cardinality_at_time(X,T),zero) )
=> ( X = efficient_producers
| X = first_movers ) ) ).
%----L13. First movers are the first organizations that appear in the
%----environment.
fof(l13,hypothesis,
! [E] :
( ( environment(E)
& in_environment(E,appear(an_organisation,E)) )
=> appear(an_organisation,E) = appear(first_movers,E) ) ).
%----GOAL:T2. Selection favors first movers above efficient producers
%----between the appearence of first movers and the appearence of efficient
%----producers.
fof(prove_t2,conjecture,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater_or_equal(T,appear(first_movers,E))
& greater(appear(efficient_producers,E),T) )
=> selection_favors(first_movers,efficient_producers,T) ) ).
%--------------------------------------------------------------------------