TPTP Problem File: MGT031-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT031-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : First movers appear first in an environment
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.00 v7.4.0, 0.09 v7.3.0, 0.00 v2.5.0, 0.17 v2.4.0
% Syntax : Number of clauses : 15 ( 3 unt; 2 nHn; 15 RR)
% Number of literals : 38 ( 5 equ; 24 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-3 aty)
% Number of functors : 10 ( 10 usr; 6 con; 0-2 aty)
% Number of variables : 23 ( 0 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : Created with tptp2X -f tptp -t clausify:otter MGT031+1.p
%--------------------------------------------------------------------------
cnf(mp_positive_number_when_appear_20,axiom,
( ~ environment(A)
| greater(number_of_organizations(e,appear(an_organisation,A)),zero) ) ).
cnf(mp_number_mean_non_empty_21,axiom,
( ~ environment(A)
| ~ greater(number_of_organizations(A,B),zero)
| subpopulation(sk1(B,A),A,B) ) ).
cnf(mp_number_mean_non_empty_22,axiom,
( ~ environment(A)
| ~ greater(number_of_organizations(A,B),zero)
| greater(cardinality_at_time(sk1(B,A),B),zero) ) ).
cnf(mp_no_EP_before_appearance_23,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater(appear(efficient_producers,A),B)
| ~ greater(cardinality_at_time(efficient_producers,B),zero) ) ).
cnf(mp_no_FM_before_appearance_24,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater(appear(first_movers,A),B)
| ~ greater(cardinality_at_time(first_movers,B),zero) ) ).
cnf(mp_FM_not_precede_first_25,axiom,
( ~ environment(A)
| greater_or_equal(appear(first_movers,A),appear(an_organisation,A)) ) ).
cnf(mp_greater_transitivity_26,axiom,
( ~ greater(A,B)
| ~ greater(B,C)
| greater(A,C) ) ).
cnf(mp_greater_or_equal_27,axiom,
( ~ greater_or_equal(A,B)
| greater(A,B)
| A = B ) ).
cnf(mp_greater_or_equal_28,axiom,
( ~ greater(A,B)
| greater_or_equal(A,B) ) ).
cnf(mp_greater_or_equal_29,axiom,
( A != B
| greater_or_equal(A,B) ) ).
cnf(a9_30,hypothesis,
( ~ environment(A)
| ~ subpopulation(B,A,C)
| ~ greater(cardinality_at_time(B,C),zero)
| B = efficient_producers
| B = first_movers ) ).
cnf(a13_31,hypothesis,
( ~ environment(A)
| greater(appear(efficient_producers,e),appear(first_movers,A)) ) ).
cnf(prove_l13_32,negated_conjecture,
environment(sk2) ).
cnf(prove_l13_33,negated_conjecture,
in_environment(sk2,appear(an_organisation,sk2)) ).
cnf(prove_l13_34,negated_conjecture,
appear(an_organisation,sk2) != appear(first_movers,sk2) ).
%--------------------------------------------------------------------------