TPTP Problem File: MGT031+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT031+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : First movers appear first in an environment
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : CounterSatisfiable
% Rating : 0.00 v7.5.0, 0.20 v7.4.0, 0.00 v6.1.0, 0.09 v6.0.0, 0.08 v5.5.0, 0.00 v4.1.0, 0.20 v4.0.1, 0.00 v3.5.0, 0.33 v3.4.0, 0.00 v3.1.0, 0.17 v2.7.0, 0.00 v2.1.0
% Syntax : Number of formulae : 10 ( 0 unt; 0 def)
% Number of atoms : 32 ( 4 equ)
% Maximal formula atoms : 5 ( 3 avg)
% Number of connectives : 24 ( 2 ~; 2 |; 10 &)
% ( 1 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-3 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 19 ( 18 !; 1 ?)
% SPC : FOF_CSA_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP. The number of organizations is positive in the environment when
%----they appear in this environment.
fof(mp_positive_number_when_appear,axiom,
! [E] :
( environment(E)
=> greater(number_of_organizations(e,appear(an_organisation,E)),zero) ) ).
%----MP. If the number of organizations is positive in the environment,
%----then there is a non-empty subpopulation in the environment.
fof(mp_number_mean_non_empty,axiom,
! [E,T] :
( ( environment(E)
& greater(number_of_organizations(E,T),zero) )
=> ? [S] :
( subpopulation(S,E,T)
& greater(cardinality_at_time(S,T),zero) ) ) ).
%----MP. There are no EP in the environment before their appearence.
fof(mp_no_EP_before_appearance,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(appear(efficient_producers,E),T) )
=> ~ greater(cardinality_at_time(efficient_producers,T),zero) ) ).
%----MP. There are no FM in the environment before their appearence.
fof(mp_no_FM_before_appearance,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(appear(first_movers,E),T) )
=> ~ greater(cardinality_at_time(first_movers,T),zero) ) ).
%----MP. The appearence of FM cannot precede the appearence of the first
%----organization in the environment.
fof(mp_FM_not_precede_first,axiom,
! [E] :
( environment(E)
=> greater_or_equal(appear(first_movers,E),appear(an_organisation,E)) ) ).
%----MP. inequality
fof(mp_greater_transitivity,axiom,
! [X,Y,Z] :
( ( greater(X,Y)
& greater(Y,Z) )
=> greater(X,Z) ) ).
%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
<=> ( greater(X,Y)
| X = Y ) ) ).
%----A9. The population contains only first movers and efficient
%----producers.
fof(a9,hypothesis,
! [E,X,T] :
( ( environment(E)
& subpopulation(X,E,T)
& greater(cardinality_at_time(X,T),zero) )
=> ( X = efficient_producers
| X = first_movers ) ) ).
%----A13. First movers appear sooner in the environment, than efficient
%----producers.
fof(a13,hypothesis,
! [E] :
( environment(E)
=> greater(appear(efficient_producers,e),appear(first_movers,E)) ) ).
%----GOAL:L13. First movers are the first organizations that appear in the
%----environment.
fof(prove_l13,conjecture,
! [E] :
( ( environment(E)
& in_environment(E,appear(an_organisation,E)) )
=> appear(an_organisation,E) = appear(first_movers,E) ) ).
%--------------------------------------------------------------------------