TPTP Problem File: MGT030+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT030+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Earliest time point when FM growth rate exceeds EP growth rate
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : There is an earliest time point, past which FM's growth
% rate exceeds EP's growth rate.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.08 v5.4.0, 0.09 v5.3.0, 0.17 v5.2.0, 0.07 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.00 v2.1.0
% Syntax : Number of formulae : 3 ( 0 unt; 0 def)
% Number of atoms : 23 ( 0 equ)
% Maximal formula atoms : 10 ( 7 avg)
% Number of connectives : 22 ( 2 ~; 0 |; 13 &)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 9 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 6 ( 6 usr; 0 prp; 1-4 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 11 ( 7 !; 4 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
%----MP. If EP's growth rate exceeds FM's growth rate past a certain time,
%----then there is an earliest time point, past which FM's growth rate
%----exceeds EP's growth rate.
fof(mp_earliest_time_growth_rate_exceeds,axiom,
! [E] :
( ( environment(E)
& ? [To] :
( in_environment(E,To)
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,To) )
=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ) )
=> ? [To] :
( in_environment(E,To)
& ~ greater(growth_rate(efficient_producers,To),growth_rate(first_movers,To))
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater(T,To) )
=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ) ) ).
%----L1. The growth rate of efficient producers exceeds the growth rate of
%----first movers past a certain time in stable environments.
fof(l1,hypothesis,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( in_environment(E,To)
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,To) )
=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ) ) ).
%----GOAL:L12. There is an earliest time point, past which FM's growth
%----rate exceeds EP's growth rate.
fof(prove_l12,conjecture,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( in_environment(E,To)
& ~ greater(growth_rate(efficient_producers,To),growth_rate(first_movers,To))
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater(T,To) )
=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ) ) ).
%--------------------------------------------------------------------------