TPTP Problem File: MGT028+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT028+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : FMs have a negative growth rate in stable environments
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : First movers have negative growth rate past a certain point
% of time (also after the appearence of efficient producers)
% in stable environments.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v5.5.0, 0.08 v5.4.0, 0.04 v5.3.0, 0.13 v5.2.0, 0.07 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.00 v2.1.0
% Syntax : Number of formulae : 3 ( 0 unt; 0 def)
% Number of atoms : 23 ( 0 equ)
% Maximal formula atoms : 10 ( 7 avg)
% Number of connectives : 20 ( 0 ~; 0 |; 13 &)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 9 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 6 ( 6 usr; 0 prp; 1-4 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 11 ( 7 !; 4 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
%----MP. If first movers have negative growth rate past time t1 in a
%----stable environment, then there is also a time, t2, which is after the
%----appearence of EP, and FM has negative growth rate past t2.
fof(mp_first_movers_negative_growth,axiom,
! [E] :
( ( environment(E)
& stable(E)
& ? [T1] :
( in_environment(E,T1)
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,T1) )
=> greater(zero,growth_rate(first_movers,T)) ) ) )
=> ? [T2] :
( greater(T2,appear(efficient_producers,E))
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,T2) )
=> greater(zero,growth_rate(first_movers,T)) ) ) ) ).
%----L11. Efficient producers have positive, while first movers have
%----negative growth rate past a certain point of time in stable
%----environments.
fof(l11,hypothesis,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( in_environment(E,To)
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,To) )
=> ( greater(growth_rate(efficient_producers,T),zero)
& greater(zero,growth_rate(first_movers,T)) ) ) ) ) ).
%----GOAL:L10. First movers have negative growth rate past a certain point
%----of time (also after the appearence of efficient producers) in stable
%----environments.
fof(prove_l10,conjecture,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( greater(To,appear(efficient_producers,E))
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,To) )
=> greater(zero,growth_rate(first_movers,T)) ) ) ) ).
%--------------------------------------------------------------------------