TPTP Problem File: MGT027-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT027-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : The FM set contracts in stable environments
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : The first mover set begins to contract past a certain time
% in stable environments.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.05 v7.5.0, 0.11 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.1.0, 0.14 v6.0.0, 0.00 v5.5.0, 0.05 v5.4.0, 0.10 v5.3.0, 0.06 v5.2.0, 0.00 v3.3.0, 0.07 v3.2.0, 0.08 v3.1.0, 0.09 v2.7.0, 0.17 v2.6.0, 0.00 v2.5.0, 0.11 v2.4.0
% Syntax : Number of clauses : 16 ( 2 unt; 3 nHn; 16 RR)
% Number of literals : 54 ( 2 equ; 36 neg)
% Maximal clause size : 5 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-4 aty)
% Number of functors : 9 ( 9 usr; 4 con; 0-2 aty)
% Number of variables : 27 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created with tptp2X -f tptp -t clausify:otter MGT027+1.p
%--------------------------------------------------------------------------
cnf(mp_contracts_from_24,axiom,
( ~ environment(A)
| ~ stable(A)
| ~ in_environment(A,B)
| greater(cardinality_at_time(first_movers,sk1(B,A)),zero)
| contracts_from(B,first_movers) ) ).
cnf(mp_contracts_from_25,axiom,
( ~ environment(A)
| ~ stable(A)
| ~ in_environment(A,B)
| greater_or_equal(sk1(B,A),B)
| contracts_from(B,first_movers) ) ).
cnf(mp_contracts_from_26,axiom,
( ~ environment(A)
| ~ stable(A)
| ~ in_environment(A,B)
| ~ greater(zero,growth_rate(first_movers,sk1(B,A)))
| contracts_from(B,first_movers) ) ).
cnf(mp_non_empty_fm_and_ep_27,axiom,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater(cardinality_at_time(first_movers,B),zero)
| ~ greater(cardinality_at_time(efficient_producers,B),zero)
| subpopulations(first_movers,efficient_producers,A,B) ) ).
cnf(mp_long_stable_environments_28,axiom,
( ~ environment(A)
| ~ stable(A)
| ~ in_environment(A,B)
| ~ greater(C,B)
| in_environment(A,C) ) ).
cnf(mp_EP_in_stable_environments_29,axiom,
( ~ environment(A)
| ~ stable(A)
| in_environment(A,appear(efficient_producers,A)) ) ).
cnf(mp_greater_transitivity_30,axiom,
( ~ greater(A,B)
| ~ greater(B,C)
| greater(A,C) ) ).
cnf(mp_greater_or_equal_31,axiom,
( ~ greater_or_equal(A,B)
| greater(A,B)
| A = B ) ).
cnf(mp_greater_or_equal_32,axiom,
( ~ greater(A,B)
| greater_or_equal(A,B) ) ).
cnf(mp_greater_or_equal_33,axiom,
( A != B
| greater_or_equal(A,B) ) ).
cnf(t6_34,hypothesis,
( ~ environment(A)
| ~ in_environment(A,B)
| ~ greater_or_equal(B,appear(efficient_producers,A))
| greater(cardinality_at_time(efficient_producers,B),zero) ) ).
cnf(l10_35,hypothesis,
( ~ environment(A)
| ~ stable(A)
| greater(sk2(A),appear(efficient_producers,A)) ) ).
cnf(l10_36,hypothesis,
( ~ environment(A)
| ~ stable(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ greater_or_equal(B,sk2(A))
| greater(zero,growth_rate(first_movers,B)) ) ).
cnf(prove_l9_37,negated_conjecture,
environment(sk3) ).
cnf(prove_l9_38,negated_conjecture,
stable(sk3) ).
cnf(prove_l9_39,negated_conjecture,
( ~ greater(A,appear(efficient_producers,sk3))
| ~ contracts_from(A,first_movers) ) ).
%--------------------------------------------------------------------------