TPTP Problem File: MGT027+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT027+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : The FM set contracts in stable environments
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : The first mover set begins to contract past a certain time
% in stable environments.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.14 v8.2.0, 0.11 v8.1.0, 0.17 v7.5.0, 0.19 v7.4.0, 0.17 v7.3.0, 0.21 v7.2.0, 0.17 v7.1.0, 0.13 v6.4.0, 0.19 v6.3.0, 0.17 v6.2.0, 0.16 v6.1.0, 0.17 v6.0.0, 0.09 v5.5.0, 0.15 v5.4.0, 0.14 v5.3.0, 0.22 v5.2.0, 0.15 v5.1.0, 0.14 v5.0.0, 0.17 v4.0.1, 0.13 v4.0.0, 0.12 v3.7.0, 0.05 v3.4.0, 0.11 v3.3.0, 0.07 v3.2.0, 0.18 v3.1.0, 0.11 v2.7.0, 0.17 v2.6.0, 0.29 v2.5.0, 0.25 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 9 ( 0 unt; 0 def)
% Number of atoms : 40 ( 1 equ)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 31 ( 0 ~; 1 |; 19 &)
% ( 1 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-4 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 21 ( 19 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP on "contracts from"
fof(mp_contracts_from,axiom,
! [E,To] :
( ( environment(E)
& stable(E)
& in_environment(E,To)
& ! [T] :
( ( greater(cardinality_at_time(first_movers,T),zero)
& greater_or_equal(T,To) )
=> greater(zero,growth_rate(first_movers,T)) ) )
=> contracts_from(To,first_movers) ) ).
%----MP. If FM and EP have members in the environment, then they are
%----non-empty subpopulations.
fof(mp_non_empty_fm_and_ep,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(cardinality_at_time(first_movers,T),zero)
& greater(cardinality_at_time(efficient_producers,T),zero) )
=> subpopulations(first_movers,efficient_producers,E,T) ) ).
%----MP. Stable environments are long.
fof(mp_long_stable_environments,axiom,
! [E,T1,T2] :
( ( environment(E)
& stable(E)
& in_environment(E,T1)
& greater(T2,T1) )
=> in_environment(E,T2) ) ).
%----MP. Efficient producers appear in stable environments.
fof(mp_EP_in_stable_environments,axiom,
! [E] :
( ( environment(E)
& stable(E) )
=> in_environment(E,appear(efficient_producers,E)) ) ).
%----MP. inequality
fof(mp_greater_transitivity,axiom,
! [X,Y,Z] :
( ( greater(X,Y)
& greater(Y,Z) )
=> greater(X,Z) ) ).
%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
<=> ( greater(X,Y)
| X = Y ) ) ).
%----T6. Once appeared in an environment, efficient producers do not
%----disappear.
fof(t6,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater_or_equal(T,appear(efficient_producers,E)) )
=> greater(cardinality_at_time(efficient_producers,T),zero) ) ).
%----L10. First movers have negative growth rate past a certain point of
%----time (also after the appearence of efficient producers) in stable
%----environments.
fof(l10,hypothesis,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( greater(To,appear(efficient_producers,E))
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,To) )
=> greater(zero,growth_rate(first_movers,T)) ) ) ) ).
%----GOAL: L9. The first mover set begins to contract past a certain time
%----in stable environments.
fof(prove_l9,conjecture,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( greater(To,appear(efficient_producers,E))
& contracts_from(To,first_movers) ) ) ).
%--------------------------------------------------------------------------