TPTP Problem File: MGT026+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT026+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Selection favors efficient producers past the critical point
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.11 v8.1.0, 0.06 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.10 v6.4.0, 0.12 v6.3.0, 0.08 v6.2.0, 0.16 v6.1.0, 0.17 v6.0.0, 0.13 v5.5.0, 0.07 v5.4.0, 0.04 v5.3.0, 0.11 v5.2.0, 0.00 v5.0.0, 0.08 v4.1.0, 0.04 v3.7.0, 0.00 v3.4.0, 0.11 v3.3.0, 0.14 v3.2.0, 0.18 v3.1.0, 0.22 v2.7.0, 0.33 v2.6.0, 0.43 v2.5.0, 0.38 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 11 ( 0 unt; 0 def)
% Number of atoms : 44 ( 3 equ)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 34 ( 1 ~; 1 |; 20 &)
% ( 1 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-4 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 27 ( 27 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP1. Selection favors subpopulations with higher growth rates.
fof(mp1_high_growth_rates,axiom,
! [E,S1,S2,T] :
( ( environment(E)
& subpopulations(S1,S2,E,T)
& greater(growth_rate(S2,T),growth_rate(S1,T)) )
=> selection_favors(S2,S1,T) ) ).
%----MP2. Selection favors organizational sets with members to set without
%----members.
fof(mp2_favour_members,axiom,
! [E,S1,S2,T] :
( ( environment(E)
& subpopulation(S1,E,T)
& subpopulation(S2,E,T)
& greater(cardinality_at_time(S1,T),zero)
& cardinality_at_time(S2,T) = zero )
=> selection_favors(S1,S2,T) ) ).
%----MP. If FM and EP have members in the environment, then they are
%----non-empty subpopulations.
fof(mp_non_empty_fm_and_ep,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(cardinality_at_time(first_movers,T),zero)
& greater(cardinality_at_time(efficient_producers,T),zero) )
=> subpopulations(first_movers,efficient_producers,E,T) ) ).
%----MP. The number of first movers cannot be negative.
fof(mp_first_movers_exist,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> greater_or_equal(cardinality_at_time(first_movers,T),zero) ) ).
%----MP. First movers and efficient producers are subpopulations.
fof(mp_subpopulations,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( subpopulation(first_movers,E,T)
& subpopulation(efficient_producers,E,T) ) ) ).
%----MP. The critical point cannot precede the appearence of efficient
%----producers.
fof(mp_critical_point_after_EP,axiom,
! [E] :
( environment(E)
=> greater_or_equal(critical_point(E),appear(efficient_producers,E)) ) ).
%----MP. inequality
fof(mp_greater_transitivity,axiom,
! [X,Y,Z] :
( ( greater(X,Y)
& greater(Y,Z) )
=> greater(X,Z) ) ).
%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
<=> ( greater(X,Y)
| X = Y ) ) ).
%----D1(<=). If a time-point is the critical point of the environment,
%----then it is the earliest time past which the growth rate of efficient
%----producers permanently exceeds growth rate of first movers.
fof(d1,hypothesis,
! [E,Tc] :
( ( environment(E)
& Tc = critical_point(E) )
=> ( ~ greater(growth_rate(efficient_producers,Tc),growth_rate(first_movers,Tc))
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater(T,Tc) )
=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ) ) ).
%----T6. Once appeared in an environment, efficient producers do not
%----disappear.
fof(t6,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater_or_equal(T,appear(efficient_producers,E)) )
=> greater(cardinality_at_time(efficient_producers,T),zero) ) ).
%----GOAL: L8. Selection favors efficient producers above first movers
%----past the critical point.
fof(prove_l8,conjecture,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(T,critical_point(E)) )
=> selection_favors(efficient_producers,first_movers,T) ) ).
%--------------------------------------------------------------------------