TPTP Problem File: MGT025+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT025+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Constant population means opposite growth rates
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : If one of the two subpopulations has positive growth rate,
% then the other subpopulation must have negative growth rate
% if the total number of organizations is constant.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.14 v8.1.0, 0.08 v7.5.0, 0.12 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.04 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.1.0, 0.13 v5.5.0, 0.26 v5.4.0, 0.29 v5.3.0, 0.37 v5.2.0, 0.20 v5.1.0, 0.24 v5.0.0, 0.21 v4.1.0, 0.26 v4.0.1, 0.22 v4.0.0, 0.25 v3.7.0, 0.30 v3.5.0, 0.26 v3.4.0, 0.32 v3.3.0, 0.36 v3.1.0, 0.44 v2.7.0, 0.50 v2.6.0, 0.43 v2.5.0, 0.38 v2.4.0, 0.50 v2.3.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 8 ( 0 unt; 0 def)
% Number of atoms : 49 ( 9 equ)
% Maximal formula atoms : 10 ( 6 avg)
% Number of connectives : 41 ( 0 ~; 6 |; 23 &)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 7 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-4 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 20 ( 20 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP. If there are only first movers and efficient producers in an
%----environment, then the number of organizations is the sum of members
%----in these groups.
fof(mp_only_members,axiom,
! [E,X,T] :
( ( environment(E)
& subpopulation(X,E,T)
& ( greater(cardinality_at_time(X,T),zero)
=> ( X = efficient_producers
| X = first_movers ) ) )
=> number_of_organizations(E,T) = sum(cardinality_at_time(first_movers,T),cardinality_at_time(efficient_producers,T)) ) ).
%----MP. First movers and efficient producers are subpopulations.
fof(mp_subpopulations,axiom,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( subpopulation(first_movers,E,T)
& subpopulation(efficient_producers,E,T) ) ) ).
%----MP. If a constant "a" is the sum of "b" and "c", then either "b" and
%----"c" are also constants, or one of the two additives increases, while
%----the other decreases.
fof(mp_abc_sum_increase,axiom,
! [A,B,C] :
( ( A = sum(B,C)
& constant(A) )
=> ( ( constant(B)
& constant(C) )
| ( increases(B)
& decreases(C) )
| ( decreases(B)
& increases(C) ) ) ) ).
%----MP. If the number of a non-empty subpopulation is constant or
%----increases or decreases, then its growth rate is, respectively, zero
%----or positive or negative.
fof(mp_growth_rate,axiom,
! [X,E,T] :
( ( environment(E)
& in_environment(E,T)
& subpopulation(X,E,T)
& greater(cardinality_at_time(X,T),zero) )
=> ( ( constant(cardinality_at_time(X,T))
=> growth_rate(X,T) = zero )
& ( increases(cardinality_at_time(X,T))
=> greater(growth_rate(X,T),zero) )
& ( decreases(cardinality_at_time(X,T))
=> greater(zero,growth_rate(X,T)) ) ) ) ).
%----MP. If the population is composed of first movers and of efficient
%----producers, then their number is not zero.
fof(mp_non_zero_producers,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> ( greater(cardinality_at_time(first_movers,T),zero)
& greater(cardinality_at_time(efficient_producers,T),zero) ) ) ).
%----MP. The time points when FM and EP are present in the environment
%----occur during the environment sustains.
fof(mp_time_point_occur,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> in_environment(E,T) ) ).
%----A9. The population contains only first movers and efficient producers.
fof(a9,hypothesis,
! [E,X,T] :
( ( environment(E)
& subpopulation(X,E,T)
& greater(cardinality_at_time(X,T),zero) )
=> ( X = efficient_producers
| X = first_movers ) ) ).
%----GOAL: L7. If one of the two subpopulations has positive growth rate,
%----then the other subpopulation must have negative growth rate if the
%----total number of organizations is constant.
fof(prove_l7,conjecture,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T)
& constant(number_of_organizations(E,T)) )
=> ( ( growth_rate(first_movers,T) = zero
& growth_rate(efficient_producers,T) = zero )
| ( greater(growth_rate(first_movers,T),zero)
& greater(zero,growth_rate(efficient_producers,T)) )
| ( greater(growth_rate(efficient_producers,T),zero)
& greater(zero,growth_rate(first_movers,T)) ) ) ) ).
%--------------------------------------------------------------------------