TPTP Problem File: MGT024+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT024+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Subpopulation growth rates are in equilibria
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English : If a subpopulation has positive growth rate, then the other
% subpopulation must have negative growth rate in equilibrium.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : Theorem
% Rating : 0.06 v9.0.0, 0.08 v8.2.0, 0.11 v8.1.0, 0.06 v7.5.0, 0.09 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.00 v7.0.0, 0.03 v6.4.0, 0.08 v6.3.0, 0.04 v6.2.0, 0.00 v6.1.0, 0.03 v6.0.0, 0.04 v5.4.0, 0.07 v5.3.0, 0.15 v5.2.0, 0.00 v4.1.0, 0.04 v4.0.0, 0.08 v3.7.0, 0.05 v3.4.0, 0.11 v3.3.0, 0.00 v3.2.0, 0.09 v3.1.0, 0.00 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 7 ( 0 unt; 0 def)
% Number of atoms : 40 ( 4 equ)
% Maximal formula atoms : 9 ( 5 avg)
% Number of connectives : 36 ( 3 ~; 4 |; 18 &)
% ( 0 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-4 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 14 ( 14 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP. The time points when FM and EP are present in the environment
%----occur during the environment sustains.
fof(mp_time_point_occur,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> in_environment(E,T) ) ).
%----MP. If both subpopulations are present in the environment, then the
%----number of organizations is positive in this environment.
fof(mp_positive_number_of_organizations,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> greater(number_of_organizations(E,T),zero) ) ).
%----MP. on equilibrium
fof(mp_equilibrium,axiom,
! [E,T] :
( ( environment(E)
& greater_or_equal(T,equilibrium(E)) )
=> ~ greater(equilibrium(E),T) ) ).
%----A3. Resource availability decreases until equilibrium is reached.
fof(a3,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(number_of_organizations(E,T),zero) )
=> ( ( greater(equilibrium(E),T)
=> decreases(resources(E,T)) )
& ( ~ greater(equilibrium(E),T)
=> constant(resources(E,T)) ) ) ) ).
%----A6. If resource availability decreases, then the number of
%----organizations increases or constant.
fof(a6,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T) )
=> ( ( decreases(resources(E,T))
=> ~ decreases(number_of_organizations(E,T)) )
& ( constant(resources(E,T))
=> constant(number_of_organizations(E,T)) ) ) ) ).
%----L7. If one of the two subpopulations has positive growth rate, then
%----the other subpopulation must have negative growth rate if the total
%----number of organizations is constant.
fof(l7,hypothesis,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T)
& constant(number_of_organizations(E,T)) )
=> ( ( growth_rate(first_movers,T) = zero
& growth_rate(efficient_producers,T) = zero )
| ( greater(growth_rate(first_movers,T),zero)
& greater(zero,growth_rate(efficient_producers,T)) )
| ( greater(growth_rate(efficient_producers,T),zero)
& greater(zero,growth_rate(first_movers,T)) ) ) ) ).
%----GOAL: L6. If a subpopulation has positive growth rate, then the
%----other subpopulation must have negative growth rate in equilibrium.
fof(prove_l6,conjecture,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T)
& greater_or_equal(T,equilibrium(E)) )
=> ( ( growth_rate(first_movers,T) = zero
& growth_rate(efficient_producers,T) = zero )
| ( greater(growth_rate(first_movers,T),zero)
& greater(zero,growth_rate(efficient_producers,T)) )
| ( greater(growth_rate(efficient_producers,T),zero)
& greater(zero,growth_rate(first_movers,T)) ) ) ) ).
%--------------------------------------------------------------------------