TPTP Problem File: MGT023+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT023+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Stable environments have a critical point.
% Version : [PB+94] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names :
% Status : Theorem
% Rating : 0.06 v9.0.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.10 v6.4.0, 0.15 v6.3.0, 0.04 v6.2.0, 0.08 v6.1.0, 0.10 v6.0.0, 0.04 v5.3.0, 0.07 v5.2.0, 0.00 v5.0.0, 0.04 v3.7.0, 0.00 v3.4.0, 0.05 v3.3.0, 0.07 v3.2.0, 0.09 v3.1.0, 0.11 v2.7.0, 0.17 v2.6.0, 0.29 v2.5.0, 0.25 v2.4.0, 0.00 v2.1.0
% Syntax : Number of formulae : 3 ( 0 unt; 0 def)
% Number of atoms : 17 ( 1 equ)
% Maximal formula atoms : 7 ( 5 avg)
% Number of connectives : 16 ( 2 ~; 0 |; 9 &)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 8 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 0 prp; 1-4 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 6 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----D1=>. A time point is the critical point of an environmental patch,
%----if and only if, it is the earliest time past which the growth rate of
%----efficient producers permanently exceeds growth rate of first movers.
fof(d1,hypothesis,
! [E,To] :
( ( environment(E)
& ~ greater(growth_rate(efficient_producers,To),growth_rate(first_movers,To))
& in_environment(E,To)
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater(T,To) )
=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) )
=> To = critical_point(E) ) ).
%----L12. There is an earliest time point, past which FM's growth rate
%----exceeds EP's growth rate.
fof(l12,hypothesis,
! [E] :
( ( environment(E)
& stable(E) )
=> ? [To] :
( in_environment(E,To)
& ~ greater(growth_rate(efficient_producers,To),growth_rate(first_movers,To))
& ! [T] :
( ( subpopulations(first_movers,efficient_producers,E,T)
& greater(T,To) )
=> greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)) ) ) ) ).
%----GOAL: L5. Stable environments have a critical point.
fof(prove_l5,conjecture,
! [E] :
( ( environment(E)
& stable(E) )
=> in_environment(E,critical_point(E)) ) ).
%--------------------------------------------------------------------------