TPTP Problem File: MGT021+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT021+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Difference between disbanding rates does not decrease
% Version : [PB+94] axioms.
% English : The difference between the disbanding rates of first movers
% and efficient producers does not decrease with time.
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names : LEMMA 3 [PM93]
% : L3 [PB+94]
% Status : Theorem
% Rating : 0.06 v9.0.0, 0.08 v8.1.0, 0.06 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.00 v6.4.0, 0.04 v6.2.0, 0.00 v6.1.0, 0.07 v6.0.0, 0.04 v5.3.0, 0.11 v5.2.0, 0.00 v3.2.0, 0.09 v3.1.0, 0.00 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 7 ( 0 unt; 0 def)
% Number of atoms : 27 ( 1 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 24 ( 4 ~; 1 |; 8 &)
% ( 0 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-4 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-2 aty)
% Number of variables : 13 ( 13 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Same as version with [PM93] axioms.
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----MP. If first movers and efficient producers are present in an
%----environment at a certain point of time, then this time-point belongs
%----to the the environment.
fof(mp_time_point_in_environment,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> in_environment(E,T) ) ).
%----MP. If first movers and efficient producers are present in an
%----environment at a certain point of time, then then the environment
%----is not empty at this time.
fof(mp_environment_not_empty,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> greater(number_of_organizations(E,T),zero) ) ).
%----MP. If something increases, then it does not decrease.
fof(mp_increase_not_decrease,axiom,
! [X] :
( increases(X)
=> ~ decreases(X) ) ).
%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
=> ( greater(X,Y)
| X = Y ) ) ).
%----A3. Resource availability decreases until equilibrium is reached.
fof(a3,hypothesis,
! [E,T] :
( ( environment(E)
& in_environment(E,T)
& greater(number_of_organizations(E,T),zero) )
=> ( ( greater(equilibrium(E),T)
=> decreases(resources(E,T)) )
& ( ~ greater(equilibrium(E),T)
=> constant(resources(E,T)) ) ) ) ).
%----L4. A decreasing resource availability affects the disbanding rate of
%----first movers more than the disbanding rate of efficient producers.
fof(l4,hypothesis,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> ( ( decreases(resources(E,T))
=> increases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) )
& ( constant(resources(E,T))
=> ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ) ) ) ).
%----GOAL: L3. The difference between the disbanding rates of first movers
%----and efficient producers does not decrease.
fof(prove_l3,conjecture,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ) ).
%--------------------------------------------------------------------------