TPTP Problem File: MGT020-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT020-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : First movers exceeds efficient producers disbanding rate
% Version : [PB+94] axioms.
% English :
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.1.0, 0.07 v6.0.0, 0.00 v5.5.0, 0.10 v5.4.0, 0.15 v5.3.0, 0.11 v5.2.0, 0.06 v5.1.0, 0.12 v5.0.0, 0.14 v4.1.0, 0.08 v4.0.1, 0.09 v3.7.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0, 0.15 v3.1.0, 0.18 v2.7.0, 0.25 v2.6.0, 0.11 v2.5.0, 0.22 v2.4.0
% Syntax : Number of clauses : 14 ( 3 unt; 2 nHn; 14 RR)
% Number of literals : 43 ( 1 equ; 29 neg)
% Maximal clause size : 7 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-4 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 25 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Same as version with [PM93] axioms.
% : Created with tptp2X -f tptp -t clausify:otter MGT020+1.p
%--------------------------------------------------------------------------
cnf(l3_22,axiom,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ decreases(difference(disbanding_rate(first_movers,B),disbanding_rate(efficient_producers,B))) ) ).
cnf(mp_earliest_time_point_23,axiom,
( ~ environment(A)
| ~ in_environment(A,initial_FM_EP(A))
| subpopulations(first_movers,efficient_producers,A,initial_FM_EP(A)) ) ).
cnf(mp_earliest_time_point_24,axiom,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| greater_or_equal(B,initial_FM_EP(A)) ) ).
cnf(mp_positive_function_difference_25,axiom,
( ~ environment(A)
| ~ greater_or_equal(B,C)
| ~ greater_or_equal(D,B)
| ~ subpopulations(first_movers,efficient_producers,A,D)
| ~ greater(disbanding_rate(first_movers,C),disbanding_rate(efficient_producers,C))
| decreases(difference(disbanding_rate(first_movers,B),disbanding_rate(efficient_producers,B)))
| greater(disbanding_rate(first_movers,D),disbanding_rate(efficient_producers,D)) ) ).
cnf(mp_time_point_occurs_26,axiom,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| in_environment(A,B) ) ).
cnf(mp_initial_time_27,axiom,
( ~ environment(A)
| greater_or_equal(initial_FM_EP(A),start_time(A)) ) ).
cnf(mp_times_in_order_28,axiom,
( ~ environment(A)
| ~ greater_or_equal(B,start_time(A))
| ~ greater(C,B)
| ~ in_environment(A,C)
| in_environment(A,B) ) ).
cnf(mp_greater_transitivity_29,axiom,
( ~ greater(A,B)
| ~ greater(B,C)
| greater(A,C) ) ).
cnf(mp_greater_or_equal_30,axiom,
( ~ greater_or_equal(A,B)
| greater(A,B)
| A = B ) ).
cnf(a8_31,hypothesis,
( ~ environment(A)
| greater(disbanding_rate(first_movers,initial_FM_EP(A)),disbanding_rate(efficient_producers,initial_FM_EP(A))) ) ).
cnf(a10_32,hypothesis,
( ~ environment(A)
| ~ subpopulations(first_movers,efficient_producers,A,B)
| ~ subpopulations(first_movers,efficient_producers,A,C)
| ~ greater_or_equal(D,B)
| ~ greater_or_equal(C,D)
| subpopulations(first_movers,efficient_producers,A,D) ) ).
cnf(prove_l2_33,negated_conjecture,
environment(sk1) ).
cnf(prove_l2_34,negated_conjecture,
subpopulations(first_movers,efficient_producers,sk1,sk2) ).
cnf(prove_l2_35,negated_conjecture,
~ greater(disbanding_rate(first_movers,sk2),disbanding_rate(efficient_producers,sk2)) ).
%--------------------------------------------------------------------------