TPTP Problem File: MGT020+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT020+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : First movers exceeds efficient producers disbanding rate
% Version : [PB+94] axioms.
% English :
% Refs : [PM93] Peli & Masuch (1993), The Logic of Propogation Strateg
% : [PM94] Peli & Masuch (1994), The Logic of Propogation Strateg
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam95]
% Names : LEMMA 2 [PM93]
% : L2 [PB+94]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.14 v8.2.0, 0.11 v8.1.0, 0.06 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.1.0, 0.13 v5.5.0, 0.07 v5.3.0, 0.15 v5.2.0, 0.00 v5.0.0, 0.08 v4.1.0, 0.09 v4.0.0, 0.08 v3.7.0, 0.05 v3.4.0, 0.11 v3.3.0, 0.14 v3.2.0, 0.18 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.29 v2.5.0, 0.38 v2.4.0, 0.00 v2.1.0
% Syntax : Number of formulae : 11 ( 0 unt; 0 def)
% Number of atoms : 42 ( 1 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 33 ( 2 ~; 1 |; 16 &)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-4 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 26 ( 26 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Same as version with [PM93] axioms.
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
%----L3. The difference between the disbanding rates of first movers and
%----efficient producers does not decrease.
fof(l3,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ) ).
%----MP. The initial time point of the environment is the earliest time,
%----when both FM and EP are present in the environment.
fof(mp_earliest_time_point,axiom,
! [E,T] :
( environment(E)
=> ( ( in_environment(E,initial_FM_EP(E))
=> subpopulations(first_movers,efficient_producers,E,initial_FM_EP(E)) )
& ( subpopulations(first_movers,efficient_producers,E,T)
=> greater_or_equal(T,initial_FM_EP(E)) ) ) ) ).
%----MP. If f1(x1) > f2(x1) and f1(x)-f2(x) does not decrease on [x1,x2]
%----then f1(x2) > f2(x2).
%----INSTANTIATION: f1(x) = disbanding_rate(first_movers,x) ;
%----f2(x) = disbanding_rate(efficient_producers,x)
fof(mp_positive_function_difference,axiom,
! [E,T,T1,T2] :
( ( environment(E)
& greater_or_equal(T,T1)
& greater_or_equal(T2,T)
& subpopulations(first_movers,efficient_producers,E,T2)
& greater(disbanding_rate(first_movers,T1),disbanding_rate(efficient_producers,T1)) )
=> ( ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))
=> greater(disbanding_rate(first_movers,T2),disbanding_rate(efficient_producers,T2)) ) ) ).
%----MP. If FM and EP are non-empty subpopulations at a time -point in the
%----environment, then this time point occurs while the environment
%----persists.
fof(mp_time_point_occurs,axiom,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> in_environment(E,T) ) ).
%----MP. The initial time of an environment cannot precede the opening of
%----this environment.
fof(mp_initial_time,axiom,
! [E] :
( environment(E)
=> greater_or_equal(initial_FM_EP(E),start_time(E)) ) ).
%----MP. If time point T1 occurs after the opening of the environment, and
%----a later time point T2 occurs before the environment ends, then T1 also
%----occurs before the end of the environment.
fof(mp_times_in_order,axiom,
! [E,T1,T2] :
( ( environment(E)
& greater_or_equal(T1,start_time(E))
& greater(T2,T1)
& in_environment(E,T2) )
=> in_environment(E,T1) ) ).
%----MP. inequality
fof(mp_greater_transitivity,axiom,
! [X,Y,Z] :
( ( greater(X,Y)
& greater(Y,Z) )
=> greater(X,Z) ) ).
%----MP. on "greater or equal to"
fof(mp_greater_or_equal,axiom,
! [X,Y] :
( greater_or_equal(X,Y)
=> ( greater(X,Y)
| X = Y ) ) ).
%----A8. The disbanding rate of first movers exceeds the disbanding rate
%----of efficient producers initially.
fof(a8,hypothesis,
! [E] :
( environment(E)
=> greater(disbanding_rate(first_movers,initial_FM_EP(E)),disbanding_rate(efficient_producers,initial_FM_EP(E))) ) ).
%----A10. If FM and EP are present in the environment at time-points t1
%----and t2, then they are present during the time-interval between
%----t1 and t2.
fof(a10,hypothesis,
! [E,T1,T2,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T1)
& subpopulations(first_movers,efficient_producers,E,T2)
& greater_or_equal(T,T1)
& greater_or_equal(T2,T) )
=> subpopulations(first_movers,efficient_producers,E,T) ) ).
%----GOAL: L2. The disbanding rate of first movers exceeds the disbanding
%----rate of efficient producers.
fof(prove_l2,conjecture,
! [E,T] :
( ( environment(E)
& subpopulations(first_movers,efficient_producers,E,T) )
=> greater(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)) ) ).
%--------------------------------------------------------------------------