TPTP Problem File: MGT017+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT017+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Length of reoganisation proportional to organization size
% Version : [PB+94] axioms.
% English : The length of reorganizational period grows by the size the
% organization begins reorganization (if the bigger organization
% survives it).
% Refs : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% : [Kam94] Kamps (1994), Email to G. Sutcliffe
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam94]
% Names :
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.04 v6.0.0, 0.50 v5.5.0, 0.12 v5.4.0, 0.13 v5.3.0, 0.22 v5.2.0, 0.00 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.1.0
% Syntax : Number of formulae : 4 ( 0 unt; 0 def)
% Number of atoms : 38 ( 0 equ)
% Maximal formula atoms : 13 ( 9 avg)
% Number of connectives : 34 ( 0 ~; 0 |; 30 &)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 22 ( 17 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 7 ( 7 usr; 0 prp; 2-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 30 ( 29 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : "Not published due to publication constraints." [Kam95].
%--------------------------------------------------------------------------
fof(mp5,axiom,
! [X,T] :
( organization(X,T)
=> ? [I] : inertia(X,I,T) ) ).
%----The level of structural inertia increases with size for each class
%----of organizations.
fof(a5_FOL,hypothesis,
! [X,Y,C,S1,S2,I1,I2,T1,T2] :
( ( organization(X,T1)
& organization(Y,T2)
& class(X,C,T1)
& class(Y,C,T2)
& size(X,S1,T1)
& size(Y,S2,T2)
& inertia(X,I1,T1)
& inertia(Y,I2,T2)
& greater(S2,S1) )
=> greater(I2,I1) ) ).
%----The length of reorganizational period grows by the inertia the
%----organization begin s reorganization (if the organization with
%----higher inertia survives it).
fof(a13_FOL,hypothesis,
! [X,Y,Rt,C,I1,I2,Ta,Tb,Tc] :
( ( organization(X,Ta)
& organization(Y,Ta)
& organization(Y,Tc)
& class(X,C,Ta)
& class(Y,C,Ta)
& reorganization(X,Ta,Tb)
& reorganization(Y,Ta,Tc)
& reorganization_type(X,Rt,Ta)
& reorganization_type(Y,Rt,Ta)
& inertia(X,I1,Ta)
& inertia(Y,I2,Ta)
& greater(I2,I1) )
=> greater(Tc,Tb) ) ).
fof(t17_FOL,conjecture,
! [X,Y,Rt,C,S1,S2,Ta,Tb,Tc] :
( ( organization(X,Ta)
& organization(Y,Ta)
& organization(Y,Tc)
& class(X,C,Ta)
& class(Y,C,Ta)
& reorganization(X,Ta,Tb)
& reorganization(Y,Ta,Tc)
& reorganization_type(X,Rt,Ta)
& reorganization_type(Y,Rt,Ta)
& size(X,S1,Ta)
& size(Y,S2,Ta)
& greater(S2,S1) )
=> greater(Tc,Tb) ) ).
%--------------------------------------------------------------------------