TPTP Problem File: MGT016-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT016-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Management (Organisation Theory)
% Problem : More complex organizations have shorter reorganization
% Version : [PB+94] axioms.
% English : The more complex an organization is at the beginning of
% reorganization, the sooner disbanding due to reorganization
% (possibly) happens - i.e., the shorter is the reorganization.
% Refs : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% : [Kam94] Kamps (1994), Email to G. Sutcliffe
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v7.1.0, 0.17 v7.0.0, 0.12 v6.3.0, 0.14 v6.2.0, 0.00 v2.4.0
% Syntax : Number of clauses : 16 ( 13 unt; 1 nHn; 16 RR)
% Number of literals : 38 ( 0 equ; 23 neg)
% Maximal clause size : 13 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 7 ( 7 usr; 0 prp; 2-3 aty)
% Number of functors : 10 ( 10 usr; 9 con; 0-2 aty)
% Number of variables : 20 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : "Not published due to publication constraints." [Kam95].
% : Created with tptp2X -f tptp -t clausify:otter MGT016+1.p
%--------------------------------------------------------------------------
cnf(mp5_1,axiom,
( ~ organization(A,B)
| inertia(A,sk1(B,A),B) ) ).
cnf(a12_FOL_2,hypothesis,
( ~ organization(A,B)
| ~ organization(C,D)
| ~ class(A,E,B)
| ~ class(C,E,D)
| ~ complexity(A,F,B)
| ~ complexity(C,G,D)
| ~ inertia(A,H,B)
| ~ inertia(C,I,D)
| ~ greater(G,F)
| greater(I,H) ) ).
cnf(a14_FOL_3,hypothesis,
( ~ organization(A,B)
| ~ organization(C,B)
| organization(C,D)
| ~ class(A,E,B)
| ~ class(C,E,B)
| ~ reorganization(A,B,F)
| ~ reorganization(C,B,D)
| ~ reorganization_type(A,G,B)
| ~ reorganization_type(C,G,B)
| ~ inertia(A,H,B)
| ~ inertia(C,I,B)
| ~ greater(I,H)
| greater(F,D) ) ).
cnf(t16_FOL_4,negated_conjecture,
organization(sk2,sk8) ).
cnf(t16_FOL_5,negated_conjecture,
organization(sk3,sk8) ).
cnf(t16_FOL_6,negated_conjecture,
~ organization(sk3,sk10) ).
cnf(t16_FOL_7,negated_conjecture,
class(sk2,sk5,sk8) ).
cnf(t16_FOL_8,negated_conjecture,
class(sk3,sk5,sk8) ).
cnf(t16_FOL_9,negated_conjecture,
reorganization(sk2,sk8,sk9) ).
cnf(t16_FOL_10,negated_conjecture,
reorganization(sk3,sk8,sk10) ).
cnf(t16_FOL_11,negated_conjecture,
reorganization_type(sk2,sk4,sk8) ).
cnf(t16_FOL_12,negated_conjecture,
reorganization_type(sk3,sk4,sk8) ).
cnf(t16_FOL_13,negated_conjecture,
complexity(sk2,sk6,sk8) ).
cnf(t16_FOL_14,negated_conjecture,
complexity(sk3,sk7,sk8) ).
cnf(t16_FOL_15,negated_conjecture,
greater(sk7,sk6) ).
cnf(t16_FOL_16,negated_conjecture,
~ greater(sk9,sk10) ).
%--------------------------------------------------------------------------