TPTP Problem File: MGT014+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT014+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : If orgainzation size increases, its complexity cannot decrease
% Version : [PB+94] axioms.
% English : If the size of an organization gets bigger, its complexity
% cannot get smaller (in lack of reorganization).
% Refs : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% : [Kam94] Kamps (1994), Email to G. Sutcliffe
% : [Kam95] Kamps (1995), Email to G. Sutcliffe
% Source : [Kam94]
% Names :
% Status : Theorem
% Rating : 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v4.1.0, 0.04 v3.7.0, 0.00 v2.1.0
% Syntax : Number of formulae : 9 ( 0 unt; 0 def)
% Number of atoms : 42 ( 4 equ)
% Maximal formula atoms : 9 ( 4 avg)
% Number of connectives : 38 ( 5 ~; 2 |; 24 &)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 33 ( 33 !; 0 ?)
% SPC : FOF_THM_EPR_SEQ
% Comments : "Not published due to publication constraints." [Kam95].
%--------------------------------------------------------------------------
%----Subsitution axioms
%----Problem axioms
fof(mp6_1,axiom,
! [X,Y] :
~ ( greater(X,Y)
& X = Y ) ).
fof(mp6_2,axiom,
! [X,Y] :
~ ( greater(X,Y)
& greater(Y,X) ) ).
%----Labelling the time variable.
fof(mp15,axiom,
! [X,T] :
( organization(X,T)
=> time(T) ) ).
%----On time.
fof(mp16,axiom,
! [T1,T2] :
( ( time(T1)
& time(T2) )
=> ( greater(T1,T2)
| T1 = T2
| greater(T2,T1) ) ) ).
%----On the notation of of reorganization-free periods.
fof(mp17,axiom,
! [X,T1,T2] :
( reorganization_free(X,T1,T2)
=> reorganization_free(X,T2,T1) ) ).
%----Every organization can have only one size at a time.
fof(mp19,axiom,
! [X,S1,S2,T1,T2] :
( ( organization(X,T1)
& organization(X,T2)
& size(X,S1,T1)
& size(X,S2,T2)
& T1 = T2 )
=> S1 = S2 ) ).
fof(t11_FOL,hypothesis,
! [X,S1,S2,T1,T2] :
( ( organization(X,T1)
& organization(X,T2)
& reorganization_free(X,T1,T2)
& size(X,S1,T1)
& size(X,S2,T2)
& greater(T2,T1) )
=> ~ greater(S1,S2) ) ).
fof(t12_FOL,hypothesis,
! [X,C1,C2,T1,T2] :
( ( organization(X,T1)
& organization(X,T2)
& reorganization_free(X,T1,T2)
& complexity(X,C1,T1)
& complexity(X,C2,T2)
& greater(T2,T1) )
=> ~ greater(C1,C2) ) ).
fof(t14_FOL,conjecture,
! [X,C1,C2,S1,S2,T1,T2] :
( ( organization(X,T1)
& organization(X,T2)
& reorganization_free(X,T1,T2)
& complexity(X,C1,T1)
& complexity(X,C2,T2)
& size(X,S1,T1)
& size(X,S2,T2)
& greater(S2,S1) )
=> ~ greater(C1,C2) ) ).
%--------------------------------------------------------------------------