TPTP Problem File: MGT009+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT009+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Large organization have higher reproducibility
% Version : [PB+94] axioms.
% English :
% Refs : [PB+92] Peli et al. (1992), A Logical Approach to Formalizing
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% : [Kam94] Kamps (1994), Email to G. Sutcliffe
% Source : [Kam94]
% Names : THEOREM 9 [PB+92]
% : T9FOL1 [PB+94]
% Status : Theorem
% Rating : 0.00 v7.5.0, 0.05 v7.4.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v6.1.0, 0.12 v6.0.0, 0.50 v5.5.0, 0.12 v5.4.0, 0.13 v5.3.0, 0.22 v5.2.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.1.0
% Syntax : Number of formulae : 4 ( 0 unt; 0 def)
% Number of atoms : 34 ( 0 equ)
% Maximal formula atoms : 12 ( 8 avg)
% Number of connectives : 30 ( 0 ~; 0 |; 25 &)
% ( 1 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 16 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 7 ( 7 usr; 0 prp; 2-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 29 ( 28 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(mp5,axiom,
! [X,T] :
( organization(X,T)
=> ? [I] : inertia(X,I,T) ) ).
%----High levels of reproducibility of structure generate strong
%----inertial pressures.
fof(a3_FOL,hypothesis,
! [X,Y,T1,T2,Rp1,Rp2,I1,I2] :
( ( organization(X,T1)
& organization(Y,T2)
& reorganization_free(X,T1,T1)
& reorganization_free(Y,T2,T2)
& reproducibility(X,Rp1,T1)
& reproducibility(Y,Rp2,T2)
& inertia(X,I1,T1)
& inertia(Y,I2,T2) )
=> ( greater(Rp2,Rp1)
<=> greater(I2,I1) ) ) ).
%----The level of structural inertia increases with size for each class
%----of organizations.
fof(a5_FOL,hypothesis,
! [X,Y,C,S1,S2,I1,I2,T1,T2] :
( ( organization(X,T1)
& organization(Y,T2)
& class(X,C,T1)
& class(Y,C,T2)
& size(X,S1,T1)
& size(Y,S2,T2)
& inertia(X,I1,T1)
& inertia(Y,I2,T2)
& greater(S2,S1) )
=> greater(I2,I1) ) ).
fof(t9_FOL,conjecture,
! [X,Y,C,Rp1,Rp2,S1,S2,T1,T2] :
( ( organization(X,T1)
& organization(Y,T2)
& reorganization_free(X,T1,T1)
& reorganization_free(Y,T2,T2)
& class(X,C,T1)
& class(Y,C,T2)
& reproducibility(X,Rp1,T1)
& reproducibility(Y,Rp2,T2)
& size(X,S1,T1)
& size(Y,S2,T2)
& greater(S2,S1) )
=> greater(Rp2,Rp1) ) ).
%--------------------------------------------------------------------------