TPTP Problem File: MGT003+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT003+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Organizational death rates decrease with age.
% Version : [PB+94] axioms.
% English :
% Refs : [PB+92] Peli et al. (1992), A Logical Approach to Formalizing
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% : [Kam94] Kamps (1994), Email to G. Sutcliffe
% Source : [Kam94]
% Names : THEOREM 3 [PB+92]
% : T3FOL2 [PB+94]
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.04 v6.0.0, 0.50 v5.5.0, 0.12 v5.4.0, 0.09 v5.3.0, 0.17 v5.2.0, 0.00 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.1.0
% Syntax : Number of formulae : 5 ( 0 unt; 0 def)
% Number of atoms : 29 ( 0 equ)
% Maximal formula atoms : 10 ( 5 avg)
% Number of connectives : 24 ( 0 ~; 0 |; 19 &)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 11 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 2-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 24 ( 23 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(mp4,axiom,
! [X,T1,T2] :
( reorganization_free(X,T1,T2)
=> ( reorganization_free(X,T1,T1)
& reorganization_free(X,T2,T2) ) ) ).
fof(mp5,axiom,
! [X,T] :
( organization(X,T)
=> ? [I] : inertia(X,I,T) ) ).
fof(t1_FOL,hypothesis,
! [X,Y,T1,T2,I1,I2,P1,P2] :
( ( organization(X,T1)
& organization(Y,T2)
& reorganization_free(X,T1,T1)
& reorganization_free(Y,T2,T2)
& inertia(X,I1,T1)
& inertia(Y,I2,T2)
& survival_chance(X,P1,T1)
& survival_chance(Y,P2,T2)
& greater(I2,I1) )
=> greater(P2,P1) ) ).
fof(t2_FOL,hypothesis,
! [X,I1,I2,T1,T2] :
( ( organization(X,T1)
& organization(X,T2)
& reorganization_free(X,T1,T2)
& inertia(X,I1,T1)
& inertia(X,I2,T2)
& greater(T2,T1) )
=> greater(I2,I1) ) ).
fof(t3_FOL,conjecture,
! [X,P1,P2,T1,T2] :
( ( organization(X,T1)
& organization(X,T2)
& reorganization_free(X,T1,T2)
& survival_chance(X,P1,T1)
& survival_chance(X,P2,T2)
& greater(T2,T1) )
=> greater(P2,P1) ) ).
%--------------------------------------------------------------------------