TPTP Problem File: MGT001+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : MGT001+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Management (Organisation Theory)
% Problem : Selection favors organizations with high inertia
% Version : [PB+94] axioms.
% English : Selection within populations of organizations in modern
% societies favours organizations whose structure have high
% inertia.
% Refs : [PB+92] Peli et al. (1992), A Logical Approach to Formalizing
% : [PB+94] Peli et al. (1994), A Logical Approach to Formalizing
% : [Kam94] Kamps (1994), Email to G. Sutcliffe
% Source : [Kam94]
% Names : THEOREM 1 [PB+92]
% : T1FOL3 [PB+94]
% Status : Theorem
% Rating : 0.00 v7.5.0, 0.05 v7.4.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.1.0, 0.12 v6.0.0, 0.50 v5.5.0, 0.12 v5.4.0, 0.17 v5.3.0, 0.26 v5.2.0, 0.00 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.00 v3.2.0, 0.11 v3.1.0, 0.00 v2.1.0
% Syntax : Number of formulae : 7 ( 0 unt; 0 def)
% Number of atoms : 48 ( 0 equ)
% Maximal formula atoms : 11 ( 6 avg)
% Number of connectives : 41 ( 0 ~; 0 |; 32 &)
% ( 2 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 13 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 8 ( 8 usr; 0 prp; 2-3 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 45 ( 42 !; 3 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(mp1,axiom,
! [X,T] :
( organization(X,T)
=> ? [R] : reliability(X,R,T) ) ).
fof(mp2,axiom,
! [X,T] :
( organization(X,T)
=> ? [A] : accountability(X,A,T) ) ).
fof(mp3,axiom,
! [X,T] :
( organization(X,T)
=> ? [Rp] : reproducibility(X,Rp,T) ) ).
%----Selection in populations of organizations in modern societies favours
%----forms with high reliability of performance and high levels of
%----accountability.
fof(a1_FOL,hypothesis,
! [X,Y,R1,R2,A1,A2,P1,P2,T1,T2] :
( ( organization(X,T1)
& organization(Y,T2)
& reliability(X,R1,T1)
& reliability(Y,R2,T2)
& accountability(X,A1,T1)
& accountability(Y,A2,T2)
& survival_chance(X,P1,T1)
& survival_chance(Y,P2,T2)
& greater(R2,R1)
& greater(A2,A1) )
=> greater(P2,P1) ) ).
%----Reliability and accountability require that organizational structures
%----be highly reproducible.
fof(a2_FOL,hypothesis,
! [X,Y,T1,T2,R1,R2,A1,A2,Rp1,Rp2] :
( ( organization(X,T1)
& organization(Y,T2)
& reliability(X,R1,T1)
& reliability(Y,R2,T2)
& accountability(X,A1,T1)
& accountability(Y,A2,T2)
& reproducibility(X,Rp1,T1)
& reproducibility(Y,Rp2,T2) )
=> ( greater(Rp2,Rp1)
<=> ( greater(R2,R1)
& greater(A2,A1) ) ) ) ).
%----High levels of reproducibility of structure generate strong
%----inertial pressures.
fof(a3_FOL,hypothesis,
! [X,Y,T1,T2,Rp1,Rp2,I1,I2] :
( ( organization(X,T1)
& organization(Y,T2)
& reorganization_free(X,T1,T1)
& reorganization_free(Y,T2,T2)
& reproducibility(X,Rp1,T1)
& reproducibility(Y,Rp2,T2)
& inertia(X,I1,T1)
& inertia(Y,I2,T2) )
=> ( greater(Rp2,Rp1)
<=> greater(I2,I1) ) ) ).
fof(t1_FOL,conjecture,
! [X,Y,T1,T2,I1,I2,P1,P2] :
( ( organization(X,T1)
& organization(Y,T2)
& reorganization_free(X,T1,T1)
& reorganization_free(Y,T2,T2)
& inertia(X,I1,T1)
& inertia(Y,I2,T2)
& survival_chance(X,P1,T1)
& survival_chance(Y,P2,T2)
& greater(I2,I1) )
=> greater(P2,P1) ) ).
%--------------------------------------------------------------------------