TPTP Problem File: LIN015^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN015^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Matrices)
% Problem : The University of Tokyo, 2013, Science Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : For the real numbers a and b, define the point P_n(x_n, y_n) on
% a plane as (x_0, y_0)=(1, 0) (x_{n+1}, y_{n+1})=(a x_n-b y_n, b
% x_n+a y_n)(n = 0, 1, 2, cdots). Find all (a, b) such that the
% following conditions (i) and (ii) are both true. (i) P_0=P_6(ii)
% P_0, where P_1, P_2, P_3, P_4, and P_5 are different from one
% another.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tokyo-2013-Ri-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 709 unt;1199 typ; 0 def)
% Number of atoms : 8061 (2218 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39660 ( 104 ~; 233 |;1182 &;36015 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4471 ( 371 atm;1209 fun; 953 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2409 (2409 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1171 usr; 68 con; 0-9 aty)
% Number of variables : 8067 ( 407 ^;7085 !; 439 ?;8067 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Yiyang Zhan; Generated: 2013-11-21
% : Answer
% ^ [V_ab_dot_0: ( 'ListOf' @ $real )] :
% ( ( V_ab_dot_0
% = ( 'cons/2' @ $real @ ( $quotient @ 1.0 @ 2.0 ) @ ( 'cons/2' @ $real @ ( $quotient @ ( 'sqrt/1' @ 3.0 ) @ 2.0 ) @ ( 'nil/0' @ $real ) ) ) )
% | ( V_ab_dot_0
% = ( 'cons/2' @ $real @ ( $quotient @ 1.0 @ 2.0 ) @ ( 'cons/2' @ $real @ ( $uminus @ ( $quotient @ ( 'sqrt/1' @ 3.0 ) @ 2.0 ) ) @ ( 'nil/0' @ $real ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ ( 'ListOf' @ $real )
@ ^ [V_ab: 'ListOf' @ $real] :
? [V_a: $real,V_b: $real] :
( ( V_ab
= ( 'cons/2' @ $real @ V_a @ ( 'cons/2' @ $real @ V_b @ ( 'nil/0' @ $real ) ) ) )
& ? [V_P0: '2d.Point',V_P1: '2d.Point',V_P2: '2d.Point',V_P3: '2d.Point',V_P4: '2d.Point',V_P5: '2d.Point',V_P6: '2d.Point',V_f: '2d.Point' > '2d.Point'] :
( ( V_f
= ( ^ [V_p: '2d.Point'] : ( '2d.point/2' @ ( $difference @ ( $product @ V_a @ ( '2d.x-coord/1' @ V_p ) ) @ ( $product @ V_b @ ( '2d.y-coord/1' @ V_p ) ) ) @ ( $sum @ ( $product @ V_b @ ( '2d.x-coord/1' @ V_p ) ) @ ( $product @ V_a @ ( '2d.y-coord/1' @ V_p ) ) ) ) ) )
& ( V_P0
= ( '2d.point/2' @ 1.0 @ 0.0 ) )
& ( V_P1
= ( V_f @ V_P0 ) )
& ( V_P2
= ( V_f @ V_P1 ) )
& ( V_P3
= ( V_f @ V_P2 ) )
& ( V_P4
= ( V_f @ V_P3 ) )
& ( V_P5
= ( V_f @ V_P4 ) )
& ( V_P6
= ( V_f @ V_P5 ) )
& ( V_P0 = V_P6 )
& ( 'pairwise-distinct/1' @ '2d.Point' @ ( 'cons/2' @ '2d.Point' @ V_P0 @ ( 'cons/2' @ '2d.Point' @ V_P1 @ ( 'cons/2' @ '2d.Point' @ V_P2 @ ( 'cons/2' @ '2d.Point' @ V_P3 @ ( 'cons/2' @ '2d.Point' @ V_P4 @ ( 'cons/2' @ '2d.Point' @ V_P5 @ ( 'nil/0' @ '2d.Point' ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------