TPTP Problem File: LIN013^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN013^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Matrices)
% Problem : The University of Tokyo, 1985, Humanities Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Let a and b be real numbers that satisfy a^2 + b^2not= 0, and
% define A =1/a^2+b^2(a^2 & a b a b & b^2) and I = 1 & 0 0 & 1.
% Let Q and R be the image of P(x, y) by the linear transformations
% defined by the matrices A^3 and (I-A)^2, respectively, where
% neither Q nor R matches P. (1) Find the magnitude of angle QPR.
% (2) Represent the area of triangle PQR using a, b, x, and y.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tokyo-1985-Bun-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3489 ( 727 unt;1203 typ; 0 def)
% Number of atoms : 7181 (2217 equ; 0 cnn)
% Maximal formula atoms : 26 ( 3 avg)
% Number of connectives : 39655 ( 107 ~; 233 |;1180 &;36009 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4481 ( 371 atm;1208 fun; 961 num;1941 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1224 (1181 usr; 78 con; 0-9 aty)
% Number of variables : 8065 ( 406 ^;7085 !; 438 ?;8065 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Yiyang Zhan; Generated: 2014-03-17
% : Answer
% ^ [V_QPR_dot_0: $real] :
% ( V_QPR_dot_0
% = ( $quotient @ 'Pi/0' @ 2.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('a/0_type',type,
'a/0': $real ).
thf('b/0_type',type,
'b/0': $real ).
thf('x/0_type',type,
'x/0': $real ).
thf('y/0_type',type,
'y/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_QPR: $real] :
? [V_A: '2d.Matrix',V_I: '2d.Matrix',V_P: '2d.Point',V_Q: '2d.Point',V_R: '2d.Point',V_a: $real,V_b: $real,V_x: $real,V_y: $real] :
( ( ( $sum @ ( '^/2' @ V_a @ 2.0 ) @ ( '^/2' @ V_b @ 2.0 ) )
!= 0.0 )
& ( V_A
= ( '2d.sm*/2' @ ( $quotient @ 1.0 @ ( $sum @ ( '^/2' @ V_a @ 2.0 ) @ ( '^/2' @ V_b @ 2.0 ) ) ) @ ( '2d.matrix/4' @ ( '^/2' @ V_a @ 2.0 ) @ ( $product @ V_a @ V_b ) @ ( $product @ V_a @ V_b ) @ ( '^/2' @ V_b @ 2.0 ) ) ) )
& ( V_I = '2d.identity-matrix/0' )
& ( V_P
= ( '2d.point/2' @ V_x @ V_y ) )
& ( V_Q
= ( '2d.vec->point/1' @ ( '2d.mv*/2' @ ( '2d.m^/2' @ V_A @ 3 ) @ ( '2d.vec/2' @ '2d.origin/0' @ V_P ) ) ) )
& ( V_R
= ( '2d.vec->point/1' @ ( '2d.mv*/2' @ ( '2d.m^/2' @ ( '2d.m-/2' @ V_I @ V_A ) @ 2 ) @ ( '2d.vec/2' @ '2d.origin/0' @ V_P ) ) ) )
& ( V_P != V_Q )
& ( V_P != V_R )
& ( V_QPR
= ( '2d.rad-of-angle/1' @ ( '2d.angle/3' @ V_Q @ V_P @ V_R ) ) ) ) ) ).
%------------------------------------------------------------------------------