TPTP Problem File: LIN012^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN012^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Vectors)
% Problem : Tohoku University, 2001, Humanities Course, Problem 4
% Version : [Mat16] axioms : Especial.
% English : For the tetrahedron OABC, assume that vec{a} = vec{OA}, vec{b}
% = vec{OB}, and vec{c} = vec{OC}. Let L, M, N, P, Q, and R be the
% middle points of the line segments OA, OB, OC, BC, CA, and AB,
% respectively, and assume that vec{p} = vec{LP}, vec{q} = vec{MQ},
% and vec{r} = vec{NR}. (1) Prove that the line segments LP, MQ,
% and NR intersect with one another at a point. (2) Represent
% vec{a}, vec{b}, and vec{c} using vec{p}, vec{q}, and vec{r}.
% (3) Assume that the straight lines LP, MQ, and NR are orthogonal
% to one another. Let X be the point in a space such that vec{AX}
% =vec{LP}. Represent the volume of the tetrahedron XABC using
% |vec{p}|, |vec{q}|, and |vec{r}|.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tohoku-2001-Bun-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3491 ( 728 unt;1205 typ; 0 def)
% Number of atoms : 6655 (2215 equ; 0 cnn)
% Maximal formula atoms : 21 ( 2 avg)
% Number of connectives : 39651 ( 104 ~; 233 |;1183 &;36003 @)
% (1095 <=>;1033 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4461 ( 371 atm;1203 fun; 951 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1217 (1174 usr; 71 con; 0-9 aty)
% Number of variables : 8066 ( 405 ^;7095 !; 430 ?;8066 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Tomoya Ishii; Generated: 2014-04-23
% : Answer
% ^ [V_a_b_c_dot_0: ( 'ListOf' @ '3d.Vector' )] :
% ( V_a_b_c_dot_0
% = ( 'cons/2' @ '3d.Vector' @ ( '3d.v+/2' @ 'q/0' @ 'r/0' ) @ ( 'cons/2' @ '3d.Vector' @ ( '3d.v+/2' @ 'p/0' @ 'r/0' ) @ ( 'cons/2' @ '3d.Vector' @ ( '3d.v+/2' @ 'p/0' @ 'q/0' ) @ ( 'nil/0' @ '3d.Vector' ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('p/0_type',type,
'p/0': '3d.Vector' ).
thf('p_abs/0_type',type,
'p_abs/0': $real ).
thf('q/0_type',type,
'q/0': '3d.Vector' ).
thf('q_abs/0_type',type,
'q_abs/0': $real ).
thf('r/0_type',type,
'r/0': '3d.Vector' ).
thf('r_abs/0_type',type,
'r_abs/0': $real ).
thf(p1,conjecture,
! [V_A: '3d.Point',V_B: '3d.Point',V_C: '3d.Point',V_L: '3d.Point',V_M: '3d.Point',V_N: '3d.Point',V_P: '3d.Point',V_Q: '3d.Point',V_R: '3d.Point'] :
( ( ( '3d.is-tetrahedron/4' @ '3d.origin/0' @ V_A @ V_B @ V_C )
& ( V_L
= ( '3d.seg-midpoint-of/1' @ ( '3d.seg/2' @ '3d.origin/0' @ V_A ) ) )
& ( V_M
= ( '3d.seg-midpoint-of/1' @ ( '3d.seg/2' @ '3d.origin/0' @ V_B ) ) )
& ( V_N
= ( '3d.seg-midpoint-of/1' @ ( '3d.seg/2' @ '3d.origin/0' @ V_C ) ) )
& ( V_P
= ( '3d.seg-midpoint-of/1' @ ( '3d.seg/2' @ V_B @ V_C ) ) )
& ( V_Q
= ( '3d.seg-midpoint-of/1' @ ( '3d.seg/2' @ V_C @ V_A ) ) )
& ( V_R
= ( '3d.seg-midpoint-of/1' @ ( '3d.seg/2' @ V_A @ V_B ) ) ) )
=> ? [V_S: '3d.Point'] :
( ( '3d.on/2' @ V_S @ ( '3d.seg/2' @ V_L @ V_P ) )
& ( '3d.on/2' @ V_S @ ( '3d.seg/2' @ V_M @ V_Q ) )
& ( '3d.on/2' @ V_S @ ( '3d.seg/2' @ V_N @ V_R ) )
& ! [V_T: '3d.Point'] :
( ( ( '3d.on/2' @ V_T @ ( '3d.seg/2' @ V_L @ V_P ) )
& ( '3d.on/2' @ V_T @ ( '3d.seg/2' @ V_M @ V_Q ) )
& ( '3d.on/2' @ V_T @ ( '3d.seg/2' @ V_N @ V_R ) ) )
=> ( V_S = V_T ) ) ) ) ).
%------------------------------------------------------------------------------