TPTP Problem File: LIN011^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN011^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Vectors)
% Problem : Osaka University, 2003, Humanities Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : For the planar vectors vec{p} = (p_1, p_2) and vec{q} =
% (q_1, q_2), define {vec{p}, vec{q}} = p_1 q_2 - p_2 q_1. (1) For
% the planar vectors vec{a}, vec{b}, and vec{c}, define {vec{a},
% vec{b}} = l, {vec{b}, vec{c}} = m, and {vec{c}, vec{a}} = n,
% then prove that lvec{c} + mvec{a} + nvec{b} =vec{0} is true.
% (2) Let l, m, and n be all positive in (1). Then, prove that an
% arbitrary planar vector vec{d} can be represented as vec{d} =
% rvec{a} + svec{b} + tvec{c} using real numbers r, s, and t,
% which are equal to or larger than 0.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Osaka-2003-Bun-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 710 unt;1199 typ; 0 def)
% Number of atoms : 8251 (2213 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39635 ( 104 ~; 233 |;1176 &;35996 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4467 ( 371 atm;1206 fun; 951 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2410 (2410 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1215 (1172 usr; 69 con; 0-9 aty)
% Number of variables : 8064 ( 407 ^;7088 !; 433 ?;8064 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Tomoya Ishii; Generated: 2014-04-30
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1,conjecture,
? [V_func: '2d.Point' > '2d.Point' > $real] :
( ( V_func
= ( ^ [V_p: '2d.Point',V_q: '2d.Point'] : ( $difference @ ( $product @ ( '2d.x-coord/1' @ V_p ) @ ( '2d.y-coord/1' @ V_q ) ) @ ( $product @ ( '2d.y-coord/1' @ V_p ) @ ( '2d.x-coord/1' @ V_q ) ) ) ) )
& ! [V_a: '2d.Point',V_b: '2d.Point',V_c: '2d.Point'] :
? [V_l: $real,V_m: $real,V_n: $real] :
( ( ( V_func @ V_a @ V_b )
= V_l )
& ( ( V_func @ V_b @ V_c )
= V_m )
& ( ( V_func @ V_c @ V_a )
= V_n )
& ( ( '2d.v-sum/1' @ ( 'cons/2' @ '2d.Vector' @ ( '2d.sv*/2' @ V_l @ ( '2d.vec/2' @ '2d.origin/0' @ V_c ) ) @ ( 'cons/2' @ '2d.Vector' @ ( '2d.sv*/2' @ V_m @ ( '2d.vec/2' @ '2d.origin/0' @ V_a ) ) @ ( 'cons/2' @ '2d.Vector' @ ( '2d.sv*/2' @ V_n @ ( '2d.vec/2' @ '2d.origin/0' @ V_b ) ) @ ( 'nil/0' @ '2d.Vector' ) ) ) ) )
= '2d.zero-vector/0' ) ) ) ).
%------------------------------------------------------------------------------