TPTP Problem File: LIN010^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN010^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Vectors)
% Problem : Nagoya University, 2001, Science Course, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Assume that the circumcenter (the center of a circumscribed
% circle) O of triangle ABC is inside the triangle, and alpha,
% beta, and gamma are positive numbers that satisfy alpha.vec{OA} +
% beta.vec{OB} + gamma.vec{OC} =vec{0}. Let A', B', and C' be the
% intersections of the straight lines OA, OB, and OC and the sides
% BC, CA, and AB, respectively. (1) Represent vec{OA'} using
% vec{OA}, alpha, and beta, gamma. (2) Prove that if the
% circumcenter of triangle A'B'C' matches O, alpha = beta = gamma.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Nagoya-2001-Ri-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3490 ( 728 unt;1204 typ; 0 def)
% Number of atoms : 7394 (2212 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39668 ( 104 ~; 233 |;1184 &;36021 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4467 ( 374 atm;1203 fun; 954 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1224 (1181 usr; 78 con; 0-9 aty)
% Number of variables : 8064 ( 406 ^;7085 !; 437 ?;8064 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Ukyo Suzuki; Generated: 2014-08-22
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('OAx/0_type',type,
'OAx/0': $real ).
thf('OAy/0_type',type,
'OAy/0': $real ).
thf('alpha/0_type',type,
'alpha/0': $real ).
thf('beta/0_type',type,
'beta/0': $real ).
thf('gamma/0_type',type,
'gamma/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ '2d.Vector'
@ ^ [V_OAp: '2d.Vector'] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_O: '2d.Point',V_OA: '2d.Vector',V_Ap: '2d.Point',V_Bp: '2d.Point',V_Cp: '2d.Point'] :
( ( '2d.is-triangle/3' @ V_A @ V_B @ V_C )
& ( '2d.is-circumcenter-of/2' @ V_O @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( '2d.point-inside-of/2' @ V_O @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) )
& ( V_OA
= ( '2d.vec2d/2' @ 'OAx/0' @ 'OAy/0' ) )
& ( V_OA
= ( '2d.vec/2' @ V_O @ V_A ) )
& ( '2d.zero-vector/0'
= ( '2d.v+/2' @ ( '2d.sv*/2' @ 'alpha/0' @ ( '2d.vec/2' @ V_O @ V_A ) ) @ ( '2d.v+/2' @ ( '2d.sv*/2' @ 'beta/0' @ ( '2d.vec/2' @ V_O @ V_B ) ) @ ( '2d.sv*/2' @ 'gamma/0' @ ( '2d.vec/2' @ V_O @ V_C ) ) ) ) )
& ( $less @ 0.0 @ 'alpha/0' )
& ( $less @ 0.0 @ 'beta/0' )
& ( $less @ 0.0 @ 'gamma/0' )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_O @ V_A ) @ ( '2d.seg/2' @ V_B @ V_C ) @ V_Ap )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_O @ V_B ) @ ( '2d.seg/2' @ V_C @ V_A ) @ V_Bp )
& ( '2d.intersect/3' @ ( '2d.line/2' @ V_O @ V_C ) @ ( '2d.seg/2' @ V_A @ V_B ) @ V_Cp )
& ( V_OAp
= ( '2d.vec/2' @ V_O @ V_Ap ) ) ) ) ).
%------------------------------------------------------------------------------