TPTP Problem File: LIN009^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN009^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Matrices)
% Problem : Kyushu University, 2009, Science Course, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Assume that the magnitudes of the second-order column vectors X,
% Y, and Z are all 1, and define X = (1 0) and Y != X, where the
% magnitude of a second-order column vector (x y) is defined as
% sqrt(x^2+y^2) in general. Assume that the second-order square
% matrix A satisfies A X = Y, A Y = Z, and A Z = X. Answer the
% following questions: (1) Prove that Y != -X. (2) Prove that Z is
% uniquely defined as Z = s X + t Y, where s and t are real numbers.
% (3) Prove that X + Y + Z = (0 0). (4) Find the matrix A.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyushu-2009-Ri-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 727 unt;1199 typ; 0 def)
% Number of atoms : 6767 (2217 equ; 0 cnn)
% Maximal formula atoms : 21 ( 2 avg)
% Number of connectives : 39619 ( 106 ~; 233 |;1179 &;35974 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4469 ( 371 atm;1203 fun; 959 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1211 (1168 usr; 65 con; 0-9 aty)
% Number of variables : 8059 ( 405 ^;7089 !; 429 ?;8059 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Tomoya Ishii; Generated: 2014-05-21
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1,conjecture,
! [V_X: '2d.Vector',V_Y: '2d.Vector',V_Z: '2d.Vector',V_A: '2d.Matrix'] :
( ( ( V_X
= ( '2d.vec/2' @ ( '2d.point/2' @ 1.0 @ 0.0 ) @ ( '2d.point/2' @ 0.0 @ 0.0 ) ) )
& ( V_Y != V_X )
& ( ( '2d.radius/1' @ V_X )
= 1.0 )
& ( ( '2d.radius/1' @ V_Y )
= 1.0 )
& ( ( '2d.radius/1' @ V_Z )
= 1.0 )
& ( ( '2d.mv*/2' @ V_A @ V_X )
= V_Y )
& ( ( '2d.mv*/2' @ V_A @ V_Y )
= V_Z )
& ( ( '2d.mv*/2' @ V_A @ V_Z )
= V_X ) )
=> ( V_Y
!= ( '2d.sv*/2' @ -1.0 @ V_X ) ) ) ).
%------------------------------------------------------------------------------