TPTP Problem File: LIN008^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN008^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Vectors)
% Problem : Kyushu University, 2009, Science Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Consider the 3 points O(0, 0), A(2, 6), and B(3, 4) on the
% coordinate plane, and draw the perpendicular OC from the point O
% to the straight line AB. For the real numbers s and t, define
% the point P as vec{OP} = svec{OA} + tvec{OB}. Answer the
% following questions: (1) Find the coordinates of the point C,
% and represent |vec{CP}|^2 using s and t. (2) Let s be a
% constant. When t moves in the range of tge 0, find the minimum
% value of |vec{CP}|^2.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyushu-2009-Ri-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3487 ( 727 unt;1201 typ; 0 def)
% Number of atoms : 6864 (2211 equ; 0 cnn)
% Maximal formula atoms : 31 ( 3 avg)
% Number of connectives : 39604 ( 104 ~; 233 |;1174 &;35967 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4465 ( 371 atm;1203 fun; 955 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1213 (1170 usr; 67 con; 0-9 aty)
% Number of variables : 8058 ( 406 ^;7085 !; 431 ?;8058 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Tomoya Ishii; Generated: 2014-05-21
% : Answer
% ^ [V_C_dot_0: '2d.Point'] :
% ( V_C_dot_0
% = ( '2d.point/2' @ 4.0 @ 2.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('s/0_type',type,
's/0': $real ).
thf('t/0_type',type,
't/0': $real ).
thf(a1_1_qustion,conjecture,
( 'find/1' @ '2d.Point'
@ ^ [V_C: '2d.Point'] :
? [V_A: '2d.Point',V_B: '2d.Point'] :
( ( V_A
= ( '2d.point/2' @ 2.0 @ 6.0 ) )
& ( V_B
= ( '2d.point/2' @ 3.0 @ 4.0 ) )
& ( V_C
= ( '2d.foot-of-perpendicular-line-from-to/2' @ '2d.origin/0' @ ( '2d.line/2' @ V_A @ V_B ) ) ) ) ) ).
%------------------------------------------------------------------------------