TPTP Problem File: LIN007^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN007^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Vectors)
% Problem : Kyoto University, 2011, Science Course, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Prove that the spherical surface S with the center at the origin
% O and the radius sqrt(6) has common points with the plane
% alpha containing the points (4, 0, 0), (0, 4, 0), and (0, 0,
% 4) in the xyz space, and find the range of the possible value of
% the product x y z when the point (x, y, z) moves across the set
% of all the common points.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyoto-2011-Ri-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 710 unt;1199 typ; 0 def)
% Number of atoms : 8239 (2208 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39629 ( 104 ~; 233 |;1172 &;35993 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4475 ( 371 atm;1203 fun; 961 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8060 ( 405 ^;7089 !; 430 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Takehiro Naito; Generated: 2014-07-31
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(a_1,conjecture,
! [V_s: $real,V_t: $real,V_u: $real,V_v: $real] :
( ( '3d.determine/2' @ ( 'cons/2' @ '3d.Point' @ ( '3d.point/3' @ 4.0 @ 0.0 @ 0.0 ) @ ( 'cons/2' @ '3d.Point' @ ( '3d.point/3' @ 0.0 @ 4.0 @ 0.0 ) @ ( 'cons/2' @ '3d.Point' @ ( '3d.point/3' @ 0.0 @ 0.0 @ 4.0 ) @ ( 'nil/0' @ '3d.Point' ) ) ) ) @ ( '3d.plane/4' @ V_s @ V_t @ V_u @ V_v ) )
=> ? [V_p: '3d.Point'] : ( '3d.on/2' @ V_p @ ( '3d.intersection/2' @ ( '3d.sphere/2' @ '3d.origin/0' @ ( 'sqrt/1' @ 6.0 ) ) @ ( '3d.plane/4' @ V_s @ V_t @ V_u @ V_v ) ) ) ) ).
%------------------------------------------------------------------------------