TPTP Problem File: LIN006^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN006^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Matrices)
% Problem : Kyoto University, 2007, Humanities Course, Problem 1
% Version : [Mat16] axioms : Especial.
% English : Answer the following questions. (1) When A=(begin{matrix} 2 & 4
% -1 & -1end{matrix}) and E=(begin{matrix} 1 & 0 0 &
% 1end{matrix}), find A^6+2 A^4+2 A^3+2 A^2+2 A+3 E. (2) Consider
% the quadrangular pyramid OABCD whose base is the quadrilateral
% ABCD. The point P is at the vertex O at the time of 0, and moves
% to any of the 5 vertices of the quadrangular pyramid every 1
% second according to the following rule: Rule: Move to any of the
% vertices connected to the vertex where the point P exists via
% one side with the same probability. Find the probability that
% the point P is at the vertex O after n seconds.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyoto-2007-Bun-1.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6440 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39646 ( 104 ~; 233 |;1172 &;36011 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4494 ( 371 atm;1203 fun; 984 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1211 (1168 usr; 65 con; 0-9 aty)
% Number of variables : 8056 ( 406 ^;7085 !; 429 ?;8056 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Ukyo Suzuki; Generated: 2014-02-15
% : Answer
% ^ [V_x_dot_0: '2d.Matrix'] :
% ( V_x_dot_0
% = ( '2d.matrix/4' @ 3.0 @ 4.0 @ -1.0 @ 0.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ '2d.Matrix'
@ ^ [V_x: '2d.Matrix'] :
( V_x
= ( '2d.m+/2' @ ( '2d.m^/2' @ ( '2d.matrix/4' @ 2.0 @ 4.0 @ -1.0 @ -1.0 ) @ 6 ) @ ( '2d.m+/2' @ ( '2d.sm*/2' @ 2.0 @ ( '2d.m^/2' @ ( '2d.matrix/4' @ 2.0 @ 4.0 @ -1.0 @ -1.0 ) @ 4 ) ) @ ( '2d.m+/2' @ ( '2d.sm*/2' @ 2.0 @ ( '2d.m^/2' @ ( '2d.matrix/4' @ 2.0 @ 4.0 @ -1.0 @ -1.0 ) @ 3 ) ) @ ( '2d.m+/2' @ ( '2d.sm*/2' @ 2.0 @ ( '2d.m^/2' @ ( '2d.matrix/4' @ 2.0 @ 4.0 @ -1.0 @ -1.0 ) @ 2 ) ) @ ( '2d.m+/2' @ ( '2d.sm*/2' @ 2.0 @ ( '2d.matrix/4' @ 2.0 @ 4.0 @ -1.0 @ -1.0 ) ) @ ( '2d.sm*/2' @ 3.0 @ ( '2d.matrix/4' @ 1.0 @ 0.0 @ 0.0 @ 1.0 ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------