TPTP Problem File: LIN005^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN005^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Vectors)
% Problem : Hokkaido University, 2013, Humanities Course, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Consider the spatial vectors vec{a} =(1, 0, 0), vec{b}, vec{c},
% and vec{d}. Assume that |vec{b}| = |vec{c}| = |vec{d}| = 1,
% vec{b} is on the x y plane, and the y component of vec{b} is
% positive. Define vec{a}-vec{b} = p. (1) Prove that |p| < 1. Find
% the component form of vec{b} using p. (2) Assume that vec{c} and
% vec{d} are different from each other and satisfy vec{a}-vec{c} =
% vec{a}-vec{d} = vec{b}-vec{c} = vec{b}cdotvec{d} = p. When the z
% component of vec{c} is positive, find the component form of vec{c}
% and vec{d} using p. (3) When vec{c}-vec{d} = p in addition to the
% above condition, find the value of p.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Hokkaido-2013-Bun-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 728 unt;1200 typ; 0 def)
% Number of atoms : 6548 (2208 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39611 ( 104 ~; 233 |;1173 &;35974 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4472 ( 373 atm;1203 fun; 958 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1211 (1168 usr; 65 con; 0-9 aty)
% Number of variables : 8057 ( 405 ^;7087 !; 429 ?;8057 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Takehiro Naito; Generated: 2014-09-26
% : Answer
% ^ [V_b_dot_0: '3d.Point'] :
% ( ( $less @ ( $uminus @ 1.0 ) @ 'p/0' )
% & ( $less @ 'p/0' @ 1.0 )
% & ( V_b_dot_0
% = ( '3d.point/3' @ 'p/0' @ ( 'sqrt/1' @ ( $difference @ 1.0 @ ( '^/2' @ 'p/0' @ 2.0 ) ) ) @ 0.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('p/0_type',type,
'p/0': $real ).
thf(p1_1,conjecture,
! [V_b0: $real,V_b1: $real] :
( ( ( $less @ 0.0 @ V_b1 )
& ( '3d.is-unit-vec/1' @ ( '3d.vec3d/3' @ V_b0 @ V_b1 @ 0.0 ) ) )
=> ( $less @ ( 'abs/1' @ ( '3d.inner-prod/2' @ ( '3d.vec3d/3' @ 1.0 @ 0.0 @ 0.0 ) @ ( '3d.vec3d/3' @ V_b0 @ V_b1 @ 0.0 ) ) ) @ 1.0 ) ) ).
%------------------------------------------------------------------------------