TPTP Problem File: LIN002^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN002^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Vectors)
% Problem : Chart System Math II+B White Book, Problem 08CWBE071
% Version : [Mat16] axioms : Especial.
% English :
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Chart-2B-White-08CWBE071.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3487 ( 710 unt;1201 typ; 0 def)
% Number of atoms : 8295 (2214 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39637 ( 104 ~; 233 |;1180 &;35994 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4474 ( 374 atm;1204 fun; 958 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1217 (1174 usr; 71 con; 0-9 aty)
% Number of variables : 8062 ( 406 ^;7085 !; 435 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Level: 4; Author: Munehiro Kobayashi;
% Generated: 2014-12-28
% : Answer
% ^ [V_answer_dot_0: ( ''ListOf'' @ $real )] :
% ( ( V_answer_dot_0
% = ( 'cons/2' @ $real @ 'x/0' @ ( 'cons/2' @ $real @ 'y/0' @ ( 'nil/0' @ $real ) ) ) )
% & ( $lesseq @ ( $difference @ ( $sum @ 'x/0' @ ( $product @ 2.0 @ 'y/0' ) ) @ 10.0 ) @ 0.0 )
% & ( $lesseq @ 'y/0' @ ( $product @ 2.0 @ 'x/0' ) )
% & ( $lesseq @ 'x/0' @ ( $product @ 3.0 @ 'y/0' ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('x/0_type',type,
'x/0': $real ).
thf('y/0_type',type,
'y/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ ( 'ListOf' @ $real )
@ ^ [V_answer: 'ListOf' @ $real] :
? [V_O: '2d.Point',V_A: '2d.Point',V_B: '2d.Point',V_P: '2d.Point',V_s: $real,V_t: $real] :
( ( V_O = '2d.origin/0' )
& ( V_A
= ( '2d.point/2' @ 3.0 @ 1.0 ) )
& ( V_B
= ( '2d.point/2' @ 1.0 @ 2.0 ) )
& ( V_P
= ( '2d.point/2' @ 'x/0' @ 'y/0' ) )
& ( V_answer
= ( 'cons/2' @ $real @ 'x/0' @ ( 'cons/2' @ $real @ 'y/0' @ ( 'nil/0' @ $real ) ) ) )
& ( $lesseq @ ( $sum @ V_s @ V_t ) @ 2.0 )
& ( $lesseq @ 0.0 @ V_s )
& ( $lesseq @ 0.0 @ V_t )
& ( ( '2d.vec/2' @ V_O @ V_P )
= ( '2d.v+/2' @ ( '2d.sv*/2' @ V_s @ ( '2d.vec/2' @ V_O @ V_A ) ) @ ( '2d.sv*/2' @ V_t @ ( '2d.vec/2' @ V_O @ V_B ) ) ) ) ) ) ).
%------------------------------------------------------------------------------