TPTP Problem File: LIN001^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LIN001^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Linear Algebra (Vectors)
% Problem : Chart System Math II+B Blue Book, Problem 08CBBE002
% Version : [Mat16] axioms : Especial.
% English :
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Chart-2B-Blue-08CBBE002.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 711 unt;1199 typ; 0 def)
% Number of atoms : 8341 (2214 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39637 ( 104 ~; 233 |;1181 &;35993 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4464 ( 371 atm;1203 fun; 952 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1219 (1176 usr; 73 con; 0-9 aty)
% Number of variables : 8066 ( 406 ^;7085 !; 439 ?;8066 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Level: 4; Author: Munehiro Kobayashi;
% Generated: 2014-12-26
% : Answer
% ^ [V_answer_dot_0: ( ''ListOf'' @ $real )] :
% ? [V_x_dot_0: $real,V_y_dot_0: $real] :
% ( ( V_answer_dot_0
% = ( 'cons/2' @ $real @ V_x_dot_0 @ ( 'cons/2' @ $real @ V_y_dot_0 @ ( 'nil/0' @ $real ) ) ) )
% & ( 0.0
% = ( $sum @ ( '^/2' @ V_x_dot_0 @ 2.0 ) @ ( $sum @ ( '^/2' @ V_y_dot_0 @ 2.0 ) @ ( $sum @ ( $product @ V_x_dot_0 @ V_y_dot_0 ) @ ( $sum @ ( $uminus @ V_x_dot_0 ) @ ( $uminus @ V_y_dot_0 ) ) ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ ( 'ListOf' @ $real )
@ ^ [V_answer: 'ListOf' @ $real] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_b: '2d.Vector',V_c: '2d.Vector',V_p: '2d.Vector',V_K: '2d.Shape',V_P: '2d.Point',V_x: $real,V_y: $real] :
( ( V_b
= ( '2d.vec/2' @ V_A @ V_B ) )
& ( V_c
= ( '2d.vec/2' @ V_A @ V_C ) )
& ( V_p
= ( '2d.vec/2' @ V_A @ V_P ) )
& ( 1.0
= ( '2d.distance/2' @ V_A @ V_B ) )
& ( '2d.is-equilateral-triangle/3' @ V_A @ V_B @ V_C )
& ( '2d.circle-type/1' @ V_K )
& ( '2d.is-inscribed-in/2' @ ( '2d.triangle/3' @ V_A @ V_B @ V_C ) @ V_K )
& ( '2d.on/2' @ V_P @ V_K )
& ( V_p
= ( '2d.v+/2' @ ( '2d.sv*/2' @ V_x @ V_b ) @ ( '2d.sv*/2' @ V_y @ V_c ) ) )
& ( V_answer
= ( 'cons/2' @ $real @ V_x @ ( 'cons/2' @ $real @ V_y @ ( 'nil/0' @ $real ) ) ) ) ) ) ).
%------------------------------------------------------------------------------