TPTP Problem File: LDA030-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LDA030-1 : TPTP v9.0.0. Released v4.1.0.
% Domain : LD-Algebras
% Problem : Identity 24 in the equational theory of group conjugation
% Version : Especial.
% English :
% Refs : [Sta09] Stanovsky (2009), Email to Geoff Sutcliffe
% Source : [Sta09]
% Names : conj24 [Sta09]
% Status : Satisfiable
% Rating : 0.86 v9.0.0, 0.89 v8.2.0, 0.60 v8.1.0, 0.50 v7.5.0, 0.25 v7.1.0, 0.33 v7.0.0, 0.00 v6.4.0, 0.25 v6.3.0, 0.00 v6.2.0, 0.83 v6.1.0, 0.60 v5.5.0, 0.80 v5.4.0, 0.75 v5.3.0, 0.67 v5.2.0, 0.33 v4.1.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 11 ( 0 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : These are somehwat different from other LDA problems.
%------------------------------------------------------------------------------
cnf(sos01,axiom,
product(A,A) = A ).
cnf(sos02,axiom,
product(A,product(B,C)) = product(product(A,B),product(A,C)) ).
cnf(sos03,axiom,
product(product(product(A,product(B,A)),product(product(B,A),A)),product(product(A,B),C)) = product(product(product(A,product(B,A)),product(B,A)),product(product(A,product(A,B)),C)) ).
cnf(sos04,axiom,
product(product(product(product(A,B),product(A,C)),product(B,C)),product(A,product(product(B,A),D))) = product(product(product(A,B),product(A,C)),product(product(product(B,C),A),product(product(B,A),D))) ).
cnf(goals,negated_conjecture,
product(product(product(x0,x1),x1),product(x0,x2)) != product(product(x0,x1),product(product(x1,x0),x2)) ).
%------------------------------------------------------------------------------