TPTP Problem File: LDA014-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LDA014-1 : TPTP v9.0.0. Bugfixed v2.6.0.
% Domain : LD-Algebras (Embedding algebras)
% Problem : Let g = cr(t). Show that aag <= ag, t=a
% Version : [Jec93] axioms : Incomplete.
% English : This is the induction step of an induction proof.
% Refs : [Jec93] Jech (1993), LD-Algebras
% Source : [Jec93]
% Names : Conjecture 1 [Jec93]
% Status : Unsatisfiable
% Rating : 1.00 v2.6.0
% Syntax : Number of clauses : 26 ( 21 unt; 2 nHn; 20 RR)
% Number of literals : 33 ( 19 equ; 7 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 20 ( 20 usr; 17 con; 0-2 aty)
% Number of variables : 21 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
% Bugfixes : v2.6.0 - Bugfix in LDA001-0.ax
%--------------------------------------------------------------------------
%----Include Embedding algebra axioms
include('Axioms/LDA001-0.ax').
%--------------------------------------------------------------------------
cnf(clause_1,axiom,
k = critical_point(aconst) ).
cnf(clause_2,axiom,
aa = f(aconst,aconst) ).
cnf(clause_3,axiom,
aak = f(aa,k) ).
cnf(clause_4,axiom,
ak = f(aconst,k) ).
cnf(clause_5,axiom,
crit_u = critical_point(u) ).
cnf(clause_6,axiom,
aacrit_u = f(aa,crit_u) ).
cnf(clause_7,axiom,
acrit_u = f(aconst,crit_u) ).
cnf(clause_8,axiom,
crit_v = critical_point(v) ).
cnf(clause_9,axiom,
aacrit_v = f(aa,crit_v) ).
cnf(clause_10,axiom,
acrit_v = f(aconst,crit_v) ).
cnf(clause_11,axiom,
uv = f(u,v) ).
cnf(clause_12,axiom,
crit_uv = critical_point(uv) ).
cnf(clause_13,axiom,
aacrit_uv = f(aa,crit_uv) ).
cnf(clause_14,axiom,
acrit_uv = f(aconst,crit_uv) ).
%----Assume true for u and v
cnf(true_for_u,hypothesis,
~ less(acrit_u,aacrit_u) ).
cnf(true_for_v,hypothesis,
~ less(acrit_v,aacrit_v) ).
%----Prove for u*v
cnf(prove_equation,negated_conjecture,
less(acrit_uv,aacrit_uv) ).
%--------------------------------------------------------------------------