TPTP Problem File: LDA007-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LDA007-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : LD-Algebras (Embedding algebras)
% Problem : Let g = cr(t). Show that t(tsg) = tt(ts)(tg)
% Version : [Jec93] axioms : Incomplete > Reduced & Augmented > Incomplete.
% English :
% Refs : [Jec93] Jech (1993), LD-Algebras
% Source : [Jec93]
% Names : Problem 8 [Jec93]
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.09 v7.3.0, 0.05 v7.1.0, 0.00 v7.0.0, 0.05 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.05 v5.4.0, 0.00 v2.2.1, 0.11 v2.2.0, 0.14 v2.1.0, 0.13 v2.0.0
% Syntax : Number of clauses : 7 ( 7 unt; 0 nHn; 6 RR)
% Number of literals : 7 ( 7 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 8 con; 0-2 aty)
% Number of variables : 3 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include Embedding algebra axioms
% include('Axioms/LDA001-0.ax').
%--------------------------------------------------------------------------
cnf(a1,axiom,
f(X,f(Y,Z)) = f(f(X,Y),f(X,Z)) ).
cnf(clause_1,axiom,
tt = f(t,t) ).
cnf(clause_2,axiom,
ts = f(t,s) ).
cnf(clause_3,axiom,
tt_ts = f(tt,ts) ).
cnf(clause_4,axiom,
tk = f(t,k) ).
cnf(clause_5,axiom,
tsk = f(ts,k) ).
%----t(tsk) = tt(ts)(tk), where k=crit(t)
cnf(prove_equation,negated_conjecture,
f(t,tsk) != f(tt_ts,tk) ).
%--------------------------------------------------------------------------