TPTP Problem File: LDA003-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LDA003-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : LD-Algebras (Left segments)
% Problem : Show that 3 is a left segment of U = 2*2
% Version : [Jec93] axioms.
% English :
% Refs : [Jec93] Jech (1993), LD-Algebras
% Source : [Jec93]
% Names : Problem 3 [Jec93]
% Status : Unsatisfiable
% Rating : 0.00 v6.0.0, 0.11 v5.5.0, 0.12 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.12 v5.1.0, 0.00 v2.2.1, 0.11 v2.2.0, 0.14 v2.1.0, 0.20 v2.0.0
% Syntax : Number of clauses : 7 ( 6 unt; 0 nHn; 5 RR)
% Number of literals : 9 ( 4 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 8 ( 1 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----A1: x(yz)=xy(xz)
cnf(a1,axiom,
f(X,f(Y,Z)) = f(f(X,Y),f(X,Z)) ).
%----x is a left segment of xy
cnf(a2,axiom,
left(X,f(X,Y)) ).
%----transitive
cnf(a3,axiom,
( ~ left(X,Y)
| ~ left(Y,Z)
| left(X,Z) ) ).
cnf(clause_4,axiom,
n2 = f(n1,n1) ).
cnf(clause_5,axiom,
n3 = f(n2,n1) ).
cnf(clause_6,axiom,
u = f(n2,n2) ).
%----3 is a left segment of U
cnf(prove_equation,negated_conjecture,
~ left(n3,u) ).
%--------------------------------------------------------------------------