TPTP Problem File: LDA001-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LDA001-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : LD-Algebras
% Problem : Verify 3*2*U = UUU, where U = 2*2
% Version : [Jec93] (equality) axioms.
% English :
% Refs : [Jec93] Jech (1993), LD-Algebras
% Source : [Jec93]
% Names : Problem 1 [Jec93]
% Status : Unsatisfiable
% Rating : 0.00 v7.4.0, 0.04 v7.3.0, 0.00 v7.0.0, 0.05 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.10 v5.5.0, 0.11 v5.4.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.25 v2.0.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 4 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 3 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----A1: x(yz)=xy(xz)
cnf(a1,axiom,
f(X,f(Y,Z)) = f(f(X,Y),f(X,Z)) ).
cnf(clause_2,axiom,
n2 = f(n1,n1) ).
cnf(clause_3,axiom,
n3 = f(n2,n1) ).
cnf(clause_4,axiom,
u = f(n2,n2) ).
%----3*2*U = U*U*U
cnf(prove_equation,negated_conjecture,
f(f(n3,n2),u) != f(f(u,u),u) ).
%--------------------------------------------------------------------------