TPTP Problem File: LCL981+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL981+1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : CN-1 depends on the single Walsh/Fitelson axiom A4
% Version : [WF21] axioms.
% English :
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [WF21] Walsh & Fitelson (2021), Answers to Some Open Questio
% Source : [WF21]
% Names : A4 [WF21]
% Status : Theorem
% Rating : 0.80 v9.1.0
% Syntax : Number of formulae : 3 ( 2 unt; 0 def)
% Number of atoms : 5 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 4 ( 2 ~; 2 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 10 ( 10 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(condensed_detachment,axiom,
! [X,Y] :
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
fof(a4,axiom,
! [A,B,C,D,E] :
is_a_theorem(implies(A,implies(implies(not(B),implies(implies(not(C),D),implies(E,B))),implies(implies(C,E),implies(C,B))))) ).
fof(prove_cn_1,conjecture,
! [A,B,C] :
is_a_theorem(implies(implies(A,B),implies(implies(B,C),implies(A,C)))) ).
%--------------------------------------------------------------------------