TPTP Problem File: LCL977_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL977_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Logic Calculi
% Problem : Implication is a function
% Version : Especial.
% English :
% Refs : [KK+16] Kotelnikov et al. (2016), The Vampire and the FOOL
% : [Kot18] Kotelnikov (2018), Email to Geoff Sutcliffe
% Source : [Kot18]
% Names : first-class-boolean [Kot18]
% Status : Theorem
% Rating : 0.00 v9.1.0
% Syntax : Number of formulae : 5 ( 2 unt; 2 typ; 0 def)
% Number of atoms : 9 ( 3 equ)
% Maximal formula atoms : 2 ( 3 avg)
% Number of connectives : 4 ( 1 ~; 1 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of FOOLs : 9 ( 5 fml; 4 var)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 2 >; 2 *; 0 +; 0 <<)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 7 ( 7 !; 0 ?; 7 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Boolean sort is first class in FOOL:
%------------------------------------------------------------------------------
tff(imply,type,
imply: ( $o * $o ) > $o ).
tff(graph,type,
p: ( $i * $i ) > $o ).
tff(imply_definition,axiom,
! [X: $o,Y: $o] :
( imply((X),(Y))
= ( ~ (X)
| (Y) ) ) ).
tff(graph_impl,axiom,
! [X: $i,Y: $i] :
( p(X,Y)
=> ( f(X) = Y ) ) ).
tff(graph_conjecture,conjecture,
! [X: $i,Y: $i,Z: $i] :
imply(( p(X,Y)
& p(X,Z) ),Y = Z) ).
%------------------------------------------------------------------------------