TPTP Problem File: LCL976_1.002.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL976_1.002 : TPTP v9.0.0. Released v9.0.0.
% Domain : Syntactic
% Problem : Pigeonhole formula 2
% Version : Especial.
% English :
% Refs : [BHS00] Balsiger et al. (2000), A Benchmark Method for the Pro
% : [NH+22] Nalon et al. (2022), Local Reductions for the Modal Cu
% : [Nal22] Nalon (2022), Email to Geoff Sutcliffe
% : [NH+23] Nalon et al. (2023), Buy One Get 14 Free: Evaluating L
% Source : [Nal22]
% Names : s5_ph_p.0002 [Nal22]
% Status : Theorem
% Rating : 0.00 v9.0.0
% Syntax : Number of formulae : 20 ( 0 unt; 19 typ; 0 def)
% Number of atoms : 92 ( 0 equ)
% Maximal formula atoms : 92 ( 92 avg)
% Number of connectives : 237 ( 50 ~; 46 |; 45 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% ( 96 {.}; 0 {#})
% Maximal formula depth : 20 ( 20 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 19 ( 19 usr; 19 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 (; 0 !; 0 ?; 0 :)
% SPC : NX0_THM_PRP_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
tff('s5_ph_p.0002',logic,
$modal ==
[ $modalities == $modal_system_S5 ] ).
tff(p101_decl,type,
p101: $o ).
tff(p102_decl,type,
p102: $o ).
tff(p201_decl,type,
p201: $o ).
tff(p202_decl,type,
p202: $o ).
tff(p301_decl,type,
p301: $o ).
tff(p302_decl,type,
p302: $o ).
tff(x0_decl,type,
x0: $o ).
tff(y101_decl,type,
y101: $o ).
tff(y102_decl,type,
y102: $o ).
tff(y201_decl,type,
y201: $o ).
tff(y202_decl,type,
y202: $o ).
tff(y301_decl,type,
y301: $o ).
tff(y302_decl,type,
y302: $o ).
tff(z101_decl,type,
z101: $o ).
tff(z102_decl,type,
z102: $o ).
tff(z201_decl,type,
z201: $o ).
tff(z202_decl,type,
z202: $o ).
tff(z301_decl,type,
z301: $o ).
tff(z302_decl,type,
z302: $o ).
tff(prove,conjecture,
~ ( ( x0
& [.] ~ x0 )
| ( <.> ( ( p101
| ( ~ y101
& [.] y101 )
| ( ~ z101
& <.> <.> <.> [.] z101 )
| [.] ( p102
| ( ~ y102
& [.] y102 )
| ( ~ z102
& <.> <.> <.> [.] z102 ) ) )
& ( p201
| ( ~ y201
& [.] y201 )
| ( ~ z201
& <.> <.> <.> [.] z201 )
| p202
| ( ~ y202
& [.] y202 )
| ( ~ z202
& <.> <.> <.> [.] z202 ) )
& ( p301
| ( ~ y301
& [.] y301 )
| ( ~ z301
& <.> <.> <.> [.] z301 )
| p302
| ( ~ y302
& [.] y302 )
| ( ~ z302
& <.> <.> <.> [.] z302 ) ) )
& [.] ( ( ~ p101
| ( ~ y101
& [.] y101 )
| ( ~ z101
& <.> <.> <.> [.] z101 )
| ~ p201
| ( ~ y201
& [.] y201 )
| ( ~ z201
& <.> <.> <.> [.] z201 ) )
& ( ~ p101
| ( ~ y101
& [.] y101 )
| ( ~ z101
& <.> <.> <.> [.] z101 )
| ~ p301
| ( ~ y301
& [.] y301 )
| ( ~ z301
& <.> <.> <.> [.] z301 ) )
& ( ~ p201
| ( ~ y201
& [.] y201 )
| ( ~ z201
& <.> <.> <.> [.] z201 )
| ~ p301
| ( ~ y301
& [.] y301 )
| ( ~ z301
& <.> <.> <.> [.] z301 ) )
& ( <.> ( ~ p102
| ( ~ y102
& [.] y102 )
| ( ~ z102
& <.> <.> <.> [.] z102 ) )
| ~ p202
| ( ~ y202
& [.] y202 )
| ( ~ z202
& <.> <.> <.> [.] z202 ) )
& ( <.> ( ~ p102
| ( ~ y102
& [.] y102 )
| ( ~ z102
& <.> <.> <.> [.] z102 ) )
| ~ p302
| ( ~ y302
& [.] y302 )
| ( ~ z302
& <.> <.> <.> [.] z302 ) )
& ( ~ p202
| ( ~ y202
& [.] y202 )
| ( ~ z202
& <.> <.> <.> [.] z202 )
| ~ p302
| ( ~ y302
& [.] y302 )
| ( ~ z302
& <.> <.> <.> [.] z302 ) ) ) ) ) ).
%------------------------------------------------------------------------------