TPTP Problem File: LCL975_1.001.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL975_1.001 : TPTP v9.0.0. Released v9.0.0.
% Domain : Syntactic
% Problem : Pigeonhole formula 1
% Version : Especial.
% English :
% Refs : [BHS00] Balsiger et al. (2000), A Benchmark Method for the Pro
% : [NH+22] Nalon et al. (2022), Local Reductions for the Modal Cu
% : [Nal22] Nalon (2022), Email to Geoff Sutcliffe
% : [NH+23] Nalon et al. (2023), Buy One Get 14 Free: Evaluating L
% Source : [Nal22]
% Names : s4_ph_n.0001 [Nal22]
% Status : CounterSatisfiable
% Rating : 0.33 v9.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 4 ( 0 equ)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 8 ( 3 ~; 0 |; 2 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% ( 2 {.}; 0 {#})
% Maximal formula depth : 8 ( 8 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 2 ( 2 usr; 2 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 (; 0 !; 0 ?; 0 :)
% SPC : NX0_CSA_PRP_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
tff('s4_ph_n.0001',logic,
$modal ==
[ $modalities == $modal_system_S4 ] ).
tff(p101_decl,type,
p101: $o ).
tff(p201_decl,type,
p201: $o ).
tff(prove,conjecture,
~ ~ ( ( p101
& p201 )
=> <.> <.> ( ~ p101
& p201 ) ) ).
%------------------------------------------------------------------------------