TPTP Problem File: LCL953_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL953_8 : TPTP v9.0.0. Released v8.2.0.
% Domain : Set Theory
% Problem : Goedel translation of SET915+1
% Version : [QMLTP] axioms.
% English :
% Refs : [Goe69] Goedel (1969), An Interpretation of the Intuitionistic
% : [RO12] Raths & Otten (2012), The QMLTP Problem Library for Fi
% Source : [QMLTP]
% Names : GSE915+1 [QMLTP]
% Status : Theorem
% Rating : 0.00 v8.2.0
% Syntax : Number of formulae : 16 ( 2 unt; 8 typ; 0 def)
% Number of atoms : 48 ( 0 equ)
% Maximal formula atoms : 10 ( 6 avg)
% Number of connectives : 44 ( 4 ~; 0 |; 2 &)
% ( 0 <=>; 38 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 10 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 13 ( 6 >; 7 *; 0 +; 0 <<)
% Number of predicates : 5 ( 5 usr; 0 prp; 2-3 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 39 (; 36 !; 3 ?; 39 :)
% SPC : TF0_THM_NEQ_NAR
% Comments : Generated by embedproblem, version 1.7.14, rigid constant,
% modal_system_M, TFF embedding.
%------------------------------------------------------------------------------
tff('$ki_world_type',type,
'$ki_world': $tType ).
tff('$ki_local_world_decl',type,
'$ki_local_world': '$ki_world' ).
tff('$ki_accessible_decl',type,
'$ki_accessible': ( '$ki_world' * '$ki_world' ) > $o ).
tff(mrel_reflexive,axiom,
! [W: '$ki_world'] : '$ki_accessible'(W,W) ).
tff(in_decl,type,
in: ( '$ki_world' * $i * $i ) > $o ).
tff(disjoint_decl,type,
disjoint: ( '$ki_world' * $i * $i ) > $o ).
tff(empty_decl,type,
empty: ( '$ki_world' * $i ) > $o ).
tff(singleton_decl,type,
singleton: $i > $i ).
tff('$ki_exists_in_world_$i_decl',type,
'$ki_exists_in_world_$i': ( '$ki_world' * $i ) > $o ).
tff('$ki_exists_in_world_$i_nonempty',axiom,
! [W: '$ki_world'] :
? [X: $i] : '$ki_exists_in_world_$i'(W,X) ).
tff(symmetry_r1_xboole_0,axiom,
! [W: '$ki_world'] :
( '$ki_accessible'('$ki_local_world',W)
=> ! [A: $i] :
( '$ki_exists_in_world_$i'(W,A)
=> ! [W0: '$ki_world'] :
( '$ki_accessible'(W,W0)
=> ! [B: $i] :
( '$ki_exists_in_world_$i'(W0,B)
=> ! [W1: '$ki_world'] :
( '$ki_accessible'(W0,W1)
=> ( ! [W2: '$ki_world'] :
( '$ki_accessible'(W1,W2)
=> disjoint(W2,A,B) )
=> ! [W2: '$ki_world'] :
( '$ki_accessible'(W1,W2)
=> disjoint(W2,B,A) ) ) ) ) ) ) ) ).
tff(antisymmetry_r2_hidden,axiom,
! [W: '$ki_world'] :
( '$ki_accessible'('$ki_local_world',W)
=> ! [A: $i] :
( '$ki_exists_in_world_$i'(W,A)
=> ! [W0: '$ki_world'] :
( '$ki_accessible'(W,W0)
=> ! [B: $i] :
( '$ki_exists_in_world_$i'(W0,B)
=> ! [W1: '$ki_world'] :
( '$ki_accessible'(W0,W1)
=> ( ! [W2: '$ki_world'] :
( '$ki_accessible'(W1,W2)
=> in(W2,A,B) )
=> ! [W2: '$ki_world'] :
( '$ki_accessible'(W1,W2)
=> ~ ! [W3: '$ki_world'] :
( '$ki_accessible'(W2,W3)
=> in(W3,B,A) ) ) ) ) ) ) ) ) ).
tff(rc1_xboole_0,axiom,
? [A: $i] :
( '$ki_exists_in_world_$i'('$ki_local_world',A)
& ! [W: '$ki_world'] :
( '$ki_accessible'('$ki_local_world',W)
=> empty(W,A) ) ) ).
tff(rc2_xboole_0,axiom,
? [A: $i] :
( '$ki_exists_in_world_$i'('$ki_local_world',A)
& ! [W: '$ki_world'] :
( '$ki_accessible'('$ki_local_world',W)
=> ~ ! [W0: '$ki_world'] :
( '$ki_accessible'(W,W0)
=> empty(W0,A) ) ) ) ).
tff(l28_zfmisc_1,axiom,
! [W: '$ki_world'] :
( '$ki_accessible'('$ki_local_world',W)
=> ! [A: $i] :
( '$ki_exists_in_world_$i'(W,A)
=> ! [W0: '$ki_world'] :
( '$ki_accessible'(W,W0)
=> ! [B: $i] :
( '$ki_exists_in_world_$i'(W0,B)
=> ! [W1: '$ki_world'] :
( '$ki_accessible'(W0,W1)
=> ( ! [W2: '$ki_world'] :
( '$ki_accessible'(W1,W2)
=> ~ ! [W3: '$ki_world'] :
( '$ki_accessible'(W2,W3)
=> in(W3,A,B) ) )
=> ! [W2: '$ki_world'] :
( '$ki_accessible'(W1,W2)
=> disjoint(W2,singleton(A),B) ) ) ) ) ) ) ) ).
tff(verify,conjecture,
! [W: '$ki_world'] :
( '$ki_accessible'('$ki_local_world',W)
=> ! [A: $i] :
( '$ki_exists_in_world_$i'(W,A)
=> ! [W0: '$ki_world'] :
( '$ki_accessible'(W,W0)
=> ! [B: $i] :
( '$ki_exists_in_world_$i'(W0,B)
=> ! [W1: '$ki_world'] :
( '$ki_accessible'(W0,W1)
=> ( ! [W2: '$ki_world'] :
( '$ki_accessible'(W1,W2)
=> ~ ! [W3: '$ki_world'] :
( '$ki_accessible'(W2,W3)
=> in(W3,A,B) ) )
=> ! [W2: '$ki_world'] :
( '$ki_accessible'(W1,W2)
=> disjoint(W2,singleton(A),B) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------