TPTP Problem File: LCL928-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL928-1 : TPTP v9.0.0. Released v6.4.0.
% Domain : Logic Calculi (Postive sential logic)
% Problem : AxTO in BCK-> [AxL] + (Resid)
% Version : [Sla02] axioms.
% English :
% Refs : [Sla02] Slaney (2002), More Proofs of an Axiom of Lukasiewicz
% Source : [Sla02]
% Names :
% Status : Unsatisfiable
% Rating : 0.93 v9.0.0, 0.91 v8.2.0, 0.86 v8.1.0, 0.75 v7.4.0, 0.83 v7.3.0, 0.75 v6.4.0
% Syntax : Number of clauses : 7 ( 4 unt; 0 nHn; 4 RR)
% Number of literals : 11 ( 0 equ; 5 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 16 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%------------------------------------------------------------------------------
cnf(modus_ponens,axiom,
( ~ p(i(A,B))
| ~ p(A)
| p(B) ) ).
cnf(resid1,axiom,
( ~ p(i(f(A,B),C))
| p(i(A,i(B,C))) ) ).
cnf(resid2,axiom,
( p(i(f(A,B),C))
| ~ p(i(A,i(B,C))) ) ).
cnf(axBp,axiom,
p(i(i(A,B),i(i(B,C),i(A,C)))) ).
cnf(axL,axiom,
p(i(i(i(A,B),B),i(i(B,A),A))) ).
cnf(axC,axiom,
p(i(i(A,i(B,C)),i(B,i(A,C)))) ).
cnf(axTO,negated_conjecture,
~ p(i(i(i(c1,c2),i(c2,c1)),i(c2,c1))) ).
%------------------------------------------------------------------------------