TPTP Problem File: LCL875-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL875-1 : TPTP v9.0.0. Bugfixed v5.5.0.
% Domain : Logic Calculi
% Problem : The Rezus formula
% Version : [Wos10] axioms.
% English :
% Refs : [Wos10] Wos (2010), Deriving a Complex Formula from Simple Axi
% Source : [Wos10]
% Names :
% Status : Unsatisfiable
% Rating : 0.40 v9.0.0, 0.45 v8.2.0, 0.43 v8.1.0, 0.50 v6.1.0, 0.71 v6.0.0, 0.56 v5.5.0
% Syntax : Number of clauses : 6 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 8 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 13 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 24 ( 24 usr; 23 con; 0-2 aty)
% Number of variables : 11 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
% Bugfixes : v5.5.0 - Fixed prove_rezus to use Skolem constants.
%------------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
%----B
cnf(b,axiom,
is_a_theorem(implies(implies(A,B),implies(implies(C,A),implies(C,B)))) ).
%----C
cnf(c,axiom,
is_a_theorem(implies(implies(A,implies(B,C)),implies(B,implies(A,C)))) ).
%----I
cnf(i,axiom,
is_a_theorem(implies(A,A)) ).
%----W
cnf(w,axiom,
is_a_theorem(implies(implies(U,implies(U,V)),implies(U,V))) ).
%----Denial of Rezus formula
cnf(prove_rezus,negated_conjecture,
~ is_a_theorem(implies(implies(implies(x,implies(implies(implies(y,y),implies(implies(z,z),implies(implies(u,u),implies(implies(v,v),implies(x,w))))),w)),implies(implies(implies(implies(implies(v6,v7),implies(implies(v7,v8),implies(v6,v8))),implies(implies(implies(implies(implies(v9,implies(v9,v10)),implies(v9,v10)),implies(implies(implies(v11,v12),implies(implies(v12,v13),implies(v11,v13))),v14)),v14),v15)),v15),implies(implies(v16,implies(implies(implies(v17,v17),implies(implies(v18,v18),implies(implies(v19,v19),implies(implies(v20,v20),implies(v16,v21))))),v21)),v22))),v22)) ).
%------------------------------------------------------------------------------