TPTP Problem File: LCL796_5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL796_5 : TPTP v9.0.0. Released v6.0.0.
% Domain : Logic Calculi
% Problem : Strong normalization of typed lambda calculus line 143
% Version : Especial.
% English :
% Refs : [BN10] Boehme & Nipkow (2010), Sledgehammer: Judgement Day
% : [Bla13] Blanchette (2011), Email to Geoff Sutcliffe
% Source : [Bla13]
% Names : sn_143 [Bla13]
% Status : Theorem
% Rating : 0.00 v7.5.0, 0.33 v7.4.0, 0.25 v7.1.0, 0.33 v6.4.0
% Syntax : Number of formulae : 166 ( 58 unt; 53 typ; 0 def)
% Number of atoms : 217 ( 85 equ)
% Maximal formula atoms : 8 ( 1 avg)
% Number of connectives : 145 ( 41 ~; 8 |; 12 &)
% ( 12 <=>; 72 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 5 avg)
% Maximal term depth : 10 ( 2 avg)
% Number of types : 5 ( 4 usr)
% Number of type conns : 44 ( 23 >; 21 *; 0 +; 0 <<)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-4 aty)
% Number of functors : 45 ( 45 usr; 23 con; 0-5 aty)
% Number of variables : 320 ( 288 !; 8 ?; 320 :)
% ( 24 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TF1_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2011-12-13 16:20:05
%------------------------------------------------------------------------------
%----Should-be-implicit typings (6)
tff(ty_tc_HOL_Obool,type,
bool: $tType ).
tff(ty_tc_Lambda_OdB,type,
dB: $tType ).
tff(ty_tc_List_Olist,type,
list: $tType > $tType ).
tff(ty_tc_Nat_Onat,type,
nat: $tType ).
tff(ty_tc_Type_Otype,type,
type: $tType ).
tff(ty_tc_fun,type,
fun: ( $tType * $tType ) > $tType ).
%----Explicit typings (47)
tff(sy_cl_Groups_Ozero,type,
zero:
!>[A: $tType] : $o ).
tff(sy_c_COMBB,type,
combb:
!>[B: $tType,C: $tType,A: $tType] : fun(fun(B,C),fun(fun(A,B),fun(A,C))) ).
tff(sy_c_COMBC,type,
combc:
!>[A: $tType,B: $tType,C: $tType] : ( ( fun(A,fun(B,C)) * B ) > fun(A,C) ) ).
tff(sy_c_COMBS,type,
combs:
!>[A: $tType,B: $tType,C: $tType] : ( ( fun(A,fun(B,C)) * fun(A,B) ) > fun(A,C) ) ).
tff(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
tff(sy_c_HOL_Obool_Obool__size,type,
bool_size: bool > nat ).
tff(sy_c_InductTermi_OIT,type,
it: fun(dB,bool) ).
tff(sy_c_Lambda_Obeta,type,
beta: fun(dB,fun(dB,bool)) ).
tff(sy_c_Lambda_OdB_OAbs,type,
abs: dB > dB ).
tff(sy_c_Lambda_OdB_OApp,type,
app: fun(dB,fun(dB,dB)) ).
tff(sy_c_Lambda_OdB_OVar,type,
var: nat > dB ).
tff(sy_c_Lambda_OdB_OdB__size,type,
dB_size: dB > nat ).
tff(sy_c_Lambda_Olift,type,
lift: ( dB * nat ) > dB ).
tff(sy_c_Lambda_Osubst,type,
subst: ( dB * dB * nat ) > dB ).
tff(sy_c_ListOrder_Ostep1,type,
step1:
!>[A: $tType] : ( ( fun(A,fun(A,bool)) * list(A) * list(A) ) > $o ) ).
tff(sy_c_List_Ofoldl,type,
foldl:
!>[B: $tType,A: $tType] : ( ( fun(B,fun(A,B)) * B * list(A) ) > B ) ).
tff(sy_c_List_Ofoldr,type,
foldr:
!>[A: $tType,B: $tType] : ( ( fun(A,fun(B,B)) * list(A) * B ) > B ) ).
tff(sy_c_List_Olist_OCons,type,
cons:
!>[A: $tType] : ( ( A * list(A) ) > list(A) ) ).
tff(sy_c_List_Olist_Olist__case,type,
list_case:
!>[T5: $tType,A: $tType] : ( ( T5 * fun(A,fun(list(A),T5)) * list(A) ) > T5 ) ).
tff(sy_c_List_Olistsp,type,
listsp:
!>[A: $tType] : ( ( fun(A,bool) * list(A) ) > $o ) ).
tff(sy_c_Nat_Onat_Onat__size,type,
nat_size: nat > nat ).
tff(sy_c_Nat_Osize__class_Osize,type,
size_size:
!>[A: $tType] : ( A > nat ) ).
tff(sy_c_Type_Oshift,type,
shift:
!>[A: $tType] : ( ( fun(nat,A) * nat * A ) > fun(nat,A) ) ).
tff(sy_c_Type_Otype_OFun,type,
fun1: fun(type,fun(type,type)) ).
tff(sy_c_Type_Otyping,type,
typing: ( fun(nat,type) * dB ) > fun(type,bool) ).
tff(sy_c_Type_Otypings,type,
typings: ( fun(nat,type) * list(dB) ) > fun(list(type),bool) ).
tff(sy_c_aa,type,
aa:
!>[A: $tType,B: $tType] : ( ( fun(A,B) * A ) > B ) ).
tff(sy_c_fFalse,type,
fFalse: bool ).
tff(sy_c_fTrue,type,
fTrue: bool ).
tff(sy_c_fconj,type,
fconj: fun(bool,fun(bool,bool)) ).
tff(sy_c_pp,type,
pp: bool > $o ).
tff(sy_v_T_H_H____,type,
t: type ).
tff(sy_v_T_H____,type,
t2: type ).
tff(sy_v_T_Ha______,type,
t_a: type ).
tff(sy_v_T____,type,
t1: type ).
tff(sy_v_Ts____,type,
ts: list(type) ).
tff(sy_v_a____,type,
a: dB ).
tff(sy_v_as____,type,
as: list(dB) ).
tff(sy_v_e____,type,
e: fun(nat,type) ).
tff(sy_v_ea______,type,
ea: fun(nat,type) ).
tff(sy_v_i____,type,
i: nat ).
tff(sy_v_ia______,type,
ia: nat ).
tff(sy_v_n____,type,
n: nat ).
tff(sy_v_rs____,type,
rs: list(dB) ).
tff(sy_v_t____,type,
t3: dB ).
tff(sy_v_u____,type,
u: dB ).
tff(sy_v_ua______,type,
ua: dB ).
%----Relevant facts (99)
tff(fact_0__096IT_At_096,axiom,
pp(aa(dB,bool,it,t3)) ).
tff(fact_1_typing_OVar,axiom,
! [Ta1: type,X2: nat,Env: fun(nat,type)] :
( ( aa(nat,type,Env,X2) = Ta1 )
=> pp(aa(type,bool,typing(Env,var(X2)),Ta1)) ) ).
tff(fact_2_typing__elims_I1_J,axiom,
! [Ta1: type,Ib: nat,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,var(Ib)),Ta1))
=> ( aa(nat,type,Eb,Ib) = Ta1 ) ) ).
tff(fact_3_dB_Osimps_I1_J,axiom,
! [Nat2: nat,Nat1: nat] :
( ( var(Nat1) = var(Nat2) )
<=> ( Nat1 = Nat2 ) ) ).
tff(fact_4_Var_I3_J,axiom,
pp(aa(dB,bool,it,ua)) ).
tff(fact_5_uT,axiom,
pp(aa(type,bool,typing(e,u),t1)) ).
tff(fact_6_argT,axiom,
pp(aa(type,bool,typing(shift(type,e,i,t1),a),t)) ).
tff(fact_7_shift__eq,axiom,
! [A: $tType,Ta1: A,Eb: fun(nat,A),J1: nat,Ib: nat] :
( ( Ib = J1 )
=> ( aa(nat,A,shift(A,Eb,Ib,Ta1),J1) = Ta1 ) ) ).
tff(fact_8_dB_Osize_I1_J,axiom,
! [Nat: nat] : ( dB_size(var(Nat)) = zero_zero(nat) ) ).
tff(fact_9_zero__reorient,axiom,
! [A: $tType] :
( zero(A)
=> ! [X2: A] :
( ( zero_zero(A) = X2 )
<=> ( X2 = zero_zero(A) ) ) ) ).
tff(fact_10_dB_Osize_I4_J,axiom,
! [Nat: nat] : ( size_size(dB,var(Nat)) = zero_zero(nat) ) ).
tff(fact_11_bool_Osize_I1_J,axiom,
bool_size(fTrue) = zero_zero(nat) ).
tff(fact_12_uIT,axiom,
pp(aa(dB,bool,it,u)) ).
tff(fact_13_True,axiom,
n = i ).
tff(fact_14_bool_Osize_I2_J,axiom,
bool_size(fFalse) = zero_zero(nat) ).
tff(fact_15_Var__IT,axiom,
! [N1: nat] : pp(aa(dB,bool,it,var(N1))) ).
tff(fact_16__096IT_A_Ilift_Au_A0_J_096,axiom,
pp(aa(dB,bool,it,lift(u,zero_zero(nat)))) ).
tff(fact_17_argsT,axiom,
pp(aa(list(type),bool,typings(shift(type,e,i,t1),as),ts)) ).
tff(fact_18_nat_Osize_I1_J,axiom,
nat_size(zero_zero(nat)) = zero_zero(nat) ).
tff(fact_19_bool_Osize_I4_J,axiom,
size_size(bool,fFalse) = zero_zero(nat) ).
tff(fact_20_bool_Osize_I3_J,axiom,
size_size(bool,fTrue) = zero_zero(nat) ).
tff(fact_21_nat_Osize_I3_J,axiom,
size_size(nat,zero_zero(nat)) = zero_zero(nat) ).
tff(fact_22_MI2,axiom,
! [Ub: dB,Ta1: type,Ib: nat,Eb: fun(nat,type),Ta: dB,T21: type,T11: type] :
( ( t1 = aa(type,type,aa(type,fun(type,type),fun1,T11),T21) )
=> ( pp(aa(dB,bool,it,Ta))
=> ( pp(aa(type,bool,typing(shift(type,Eb,Ib,T21),Ta),Ta1))
=> ( pp(aa(dB,bool,it,Ub))
=> ( pp(aa(type,bool,typing(Eb,Ub),T21))
=> pp(aa(dB,bool,it,subst(Ta,Ub,Ib))) ) ) ) ) ) ).
tff(fact_23_MI1,axiom,
! [Ub: dB,Ta1: type,Ib: nat,Eb: fun(nat,type),Ta: dB,T21: type,T11: type] :
( ( t1 = aa(type,type,aa(type,fun(type,type),fun1,T11),T21) )
=> ( pp(aa(dB,bool,it,Ta))
=> ( pp(aa(type,bool,typing(shift(type,Eb,Ib,T11),Ta),Ta1))
=> ( pp(aa(dB,bool,it,Ub))
=> ( pp(aa(type,bool,typing(Eb,Ub),T11))
=> pp(aa(dB,bool,it,subst(Ta,Ub,Ib))) ) ) ) ) ) ).
tff(fact_24_Var_I4_J,axiom,
pp(aa(type,bool,typing(ea,ua),t1)) ).
tff(fact_25_type_Osimps_I2_J,axiom,
! [Type21: type,Type11: type,Type2: type,Type1: type] :
( ( aa(type,type,aa(type,fun(type,type),fun1,Type1),Type2) = aa(type,type,aa(type,fun(type,type),fun1,Type11),Type21) )
<=> ( ( Type1 = Type11 )
& ( Type2 = Type21 ) ) ) ).
tff(fact_26_lift__IT,axiom,
! [I: nat,T1: dB] :
( pp(aa(dB,bool,it,T1))
=> pp(aa(dB,bool,it,lift(T1,I))) ) ).
tff(fact_27_lift__type,axiom,
! [Ua: type,Ib: nat,Ta1: type,Ta: dB,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,Ta),Ta1))
=> pp(aa(type,bool,typing(shift(type,Eb,Ib,Ua),lift(Ta,Ib)),Ta1)) ) ).
tff(fact_28_subst__lift,axiom,
! [S1: dB,K: nat,T1: dB] : ( subst(lift(T1,K),S1,K) = T1 ) ).
tff(fact_29_nat__size,axiom,
! [N1: nat] : ( size_size(nat,N1) = N1 ) ).
tff(fact_30_subst__eq,axiom,
! [U1: dB,K: nat] : ( subst(var(K),U1,K) = U1 ) ).
tff(fact_31_subst__Var__IT,axiom,
! [J: nat,I: nat,R3: dB] :
( pp(aa(dB,bool,it,R3))
=> pp(aa(dB,bool,it,subst(R3,var(I),J))) ) ).
tff(fact_32_subst__lemma,axiom,
! [Ib: nat,Ua: type,Ub: dB,E: fun(nat,type),Ta1: type,Ta: dB,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,Ta),Ta1))
=> ( pp(aa(type,bool,typing(E,Ub),Ua))
=> ( ( Eb = shift(type,E,Ib,Ua) )
=> pp(aa(type,bool,typing(E,subst(Ta,Ub,Ib)),Ta1)) ) ) ) ).
tff(fact_33_size__bool,axiom,
! [B2: bool] : ( size_size(bool,B2) = zero_zero(nat) ) ).
tff(fact_34_varT,axiom,
pp(aa(type,bool,typing(shift(type,e,i,t1),var(n)),aa(type,type,aa(type,fun(type,type),fun1,t),foldr(type,type,fun1,ts,t2)))) ).
tff(fact_35__096IT_A_Ilift_Au_A0_A_092_060degree_062_AVar_A0_J_096,axiom,
pp(aa(dB,bool,it,aa(dB,dB,aa(dB,fun(dB,dB),app,lift(u,zero_zero(nat))),var(zero_zero(nat))))) ).
tff(fact_36__096e_0600_058T_H_H_062_A_092_060turnstile_062_Alift_Au_A0_A_058_AT_H_H_A_092_060Rightarrow_062_ATs_A_061_062_062_AT_H_096,axiom,
pp(aa(type,bool,typing(shift(type,e,zero_zero(nat),t),lift(u,zero_zero(nat))),aa(type,type,aa(type,fun(type,type),fun1,t),foldr(type,type,fun1,ts,t2)))) ).
tff(fact_37__096_B_Bthesis_O_A_I_B_BT_H_H_O_A_091_124_Ae_060i_058T_062_A_092_060turnstile_062_AVar_An_A_058_AT_H_H_A_092_060Rightarrow_062_ATs_A_061_062_062_AT_H_059_Ae_060i_058T_062_A_092_060turnstile_062_Aa_A_058_AT_H_H_A_124_093_A_061_061_062_Athesis_J_A_061_061_062_Athesis_096,axiom,
~ ! [T4: type] :
( pp(aa(type,bool,typing(shift(type,e,i,t1),var(n)),aa(type,type,aa(type,fun(type,type),fun1,T4),foldr(type,type,fun1,ts,t2))))
=> ~ pp(aa(type,bool,typing(shift(type,e,i,t1),a),T4)) ) ).
tff(fact_38_Cons,axiom,
rs = cons(dB,a,as) ).
tff(fact_39_headT,axiom,
pp(aa(type,bool,typing(shift(type,e,i,t1),aa(dB,dB,aa(dB,fun(dB,dB),app,var(n)),a)),foldr(type,type,fun1,ts,t2))) ).
tff(fact_40_uT_H,axiom,
pp(aa(type,bool,typing(e,u),aa(type,type,aa(type,fun(type,type),fun1,t),foldr(type,type,fun1,ts,t2)))) ).
tff(fact_41_dB_Osimps_I2_J,axiom,
! [DB23: dB,DB13: dB,DB22: dB,DB12: dB] :
( ( aa(dB,dB,aa(dB,fun(dB,dB),app,DB12),DB22) = aa(dB,dB,aa(dB,fun(dB,dB),app,DB13),DB23) )
<=> ( ( DB12 = DB13 )
& ( DB22 = DB23 ) ) ) ).
tff(fact_42_subst__App,axiom,
! [K: nat,S1: dB,U1: dB,T1: dB] : ( subst(aa(dB,dB,aa(dB,fun(dB,dB),app,T1),U1),S1,K) = aa(dB,dB,aa(dB,fun(dB,dB),app,subst(T1,S1,K)),subst(U1,S1,K)) ) ).
tff(fact_43_lift_Osimps_I2_J,axiom,
! [K: nat,T1: dB,S1: dB] : ( lift(aa(dB,dB,aa(dB,fun(dB,dB),app,S1),T1),K) = aa(dB,dB,aa(dB,fun(dB,dB),app,lift(S1,K)),lift(T1,K)) ) ).
tff(fact_44_T,axiom,
t1 = aa(type,type,aa(type,fun(type,type),fun1,t),foldr(type,type,fun1,ts,t2)) ).
tff(fact_45_App,axiom,
! [Ta: dB,Ua: type,Ta1: type,S: dB,Env: fun(nat,type)] :
( pp(aa(type,bool,typing(Env,S),aa(type,type,aa(type,fun(type,type),fun1,Ta1),Ua)))
=> ( pp(aa(type,bool,typing(Env,Ta),Ta1))
=> pp(aa(type,bool,typing(Env,aa(dB,dB,aa(dB,fun(dB,dB),app,S),Ta)),Ua)) ) ) ).
tff(fact_46__096_B_Bthesis_O_A_I_B_BTs_O_A_091_124_Ae_060i_058T_062_A_092_060turnstile_062_AVar_An_A_092_060degree_062_Aa_A_058_ATs_A_061_062_062_AT_H_059_Ae_060i_058T_062_A_124_124_N_Aas_A_058_ATs_A_124_093_A_061_061_062_Athesis_J_A_061_061_062_Athesis_096,axiom,
~ ! [Ts1: list(type)] :
( pp(aa(type,bool,typing(shift(type,e,i,t1),aa(dB,dB,aa(dB,fun(dB,dB),app,var(n)),a)),foldr(type,type,fun1,Ts1,t2)))
=> ~ pp(aa(list(type),bool,typings(shift(type,e,i,t1),as),Ts1)) ) ).
tff(fact_47_dB_Osimps_I5_J,axiom,
! [Nat: nat,DB21: dB,DB11: dB] : ( aa(dB,dB,aa(dB,fun(dB,dB),app,DB11),DB21) != var(Nat) ) ).
tff(fact_48_dB_Osimps_I4_J,axiom,
! [DB21: dB,DB11: dB,Nat: nat] : ( var(Nat) != aa(dB,dB,aa(dB,fun(dB,dB),app,DB11),DB21) ) ).
tff(fact_49_app__Var__IT,axiom,
! [I: nat,T1: dB] :
( pp(aa(dB,bool,it,T1))
=> pp(aa(dB,bool,it,aa(dB,dB,aa(dB,fun(dB,dB),app,T1),var(I)))) ) ).
tff(fact_50_nT,axiom,
pp(aa(type,bool,typing(shift(type,e,i,t1),foldl(dB,dB,app,var(n),rs)),t2)) ).
tff(fact_51__096e_060i_058T_062_A_092_060turnstile_062_AVar_An_A_092_060degree_062_Aa_A_092_060degree_062_092_060degree_062_Aas_A_058_AT_H_096,axiom,
pp(aa(type,bool,typing(shift(type,e,i,t1),foldl(dB,dB,app,aa(dB,dB,aa(dB,fun(dB,dB),app,var(n)),a),as)),t2)) ).
tff(fact_52_typing__elims_I2_J,axiom,
! [Ta1: type,Ub: dB,Ta: dB,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,aa(dB,dB,aa(dB,fun(dB,dB),app,Ta),Ub)),Ta1))
=> ~ ! [T3: type] :
( pp(aa(type,bool,typing(Eb,Ta),aa(type,type,aa(type,fun(type,type),fun1,T3),Ta1)))
=> ~ pp(aa(type,bool,typing(Eb,Ub),T3)) ) ) ).
tff(fact_53_Var_I2_J,axiom,
pp(aa(type,bool,typing(shift(type,ea,ia,t1),foldl(dB,dB,app,var(n),rs)),t_a)) ).
tff(fact_54_typings_Osimps_I2_J,axiom,
! [Tsa: list(type),Ts: list(dB),Ta: dB,Eb: fun(nat,type)] :
( pp(aa(list(type),bool,typings(Eb,cons(dB,Ta,Ts)),Tsa))
<=> pp(list_case(bool,type,fFalse,combc(type,fun(list(type),bool),fun(list(type),bool),aa(fun(type,fun(bool,bool)),fun(type,fun(fun(list(type),bool),fun(list(type),bool))),aa(fun(fun(bool,bool),fun(fun(list(type),bool),fun(list(type),bool))),fun(fun(type,fun(bool,bool)),fun(type,fun(fun(list(type),bool),fun(list(type),bool)))),combb(fun(bool,bool),fun(fun(list(type),bool),fun(list(type),bool)),type),combb(bool,bool,list(type))),aa(fun(type,bool),fun(type,fun(bool,bool)),aa(fun(bool,fun(bool,bool)),fun(fun(type,bool),fun(type,fun(bool,bool))),combb(bool,fun(bool,bool),type),fconj),typing(Eb,Ta))),typings(Eb,Ts)),Tsa)) ) ).
tff(fact_55_list_Oinject,axiom,
! [A: $tType,List1: list(A),A2: A,List: list(A),Aa: A] :
( ( cons(A,Aa,List) = cons(A,A2,List1) )
<=> ( ( Aa = A2 )
& ( List = List1 ) ) ) ).
tff(fact_56_foldl__Cons,axiom,
! [A: $tType,B: $tType,Xs: list(B),X2: B,Aa: A,F: fun(A,fun(B,A))] : ( foldl(A,B,F,Aa,cons(B,X2,Xs)) = foldl(A,B,F,aa(B,A,aa(A,fun(B,A),F,Aa),X2),Xs) ) ).
tff(fact_57_list_Osimps_I5_J,axiom,
! [A: $tType,B: $tType,List: list(B),Aa: B,F2: fun(B,fun(list(B),A)),F1: A] : ( list_case(A,B,F1,F2,cons(B,Aa,List)) = aa(list(B),A,aa(B,fun(list(B),A),F2,Aa),List) ) ).
tff(fact_58_var__app__type__eq,axiom,
! [Ua: type,Ta1: type,Ts: list(dB),Ib: nat,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,foldl(dB,dB,app,var(Ib),Ts)),Ta1))
=> ( pp(aa(type,bool,typing(Eb,foldl(dB,dB,app,var(Ib),Ts)),Ua))
=> ( Ta1 = Ua ) ) ) ).
tff(fact_59_not__Cons__self2,axiom,
! [A: $tType,Xs1: list(A),X3: A] : ( cons(A,X3,Xs1) != Xs1 ) ).
tff(fact_60_not__Cons__self,axiom,
! [A: $tType,X3: A,Xs1: list(A)] : ( Xs1 != cons(A,X3,Xs1) ) ).
tff(fact_61_list__app__typeI,axiom,
! [Ts: list(dB),Ta1: type,Tsa: list(type),Ta: dB,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,Ta),foldr(type,type,fun1,Tsa,Ta1)))
=> ( pp(aa(list(type),bool,typings(Eb,Ts),Tsa))
=> pp(aa(type,bool,typing(Eb,foldl(dB,dB,app,Ta,Ts)),Ta1)) ) ) ).
tff(fact_62_foldr_Osimps_I2_J,axiom,
! [B: $tType,A: $tType,Aa: A,Xs: list(B),X2: B,F: fun(B,fun(A,A))] : ( foldr(B,A,F,cons(B,X2,Xs),Aa) = aa(A,A,aa(B,fun(A,A),F,X2),foldr(B,A,F,Xs,Aa)) ) ).
tff(fact_63_var__app__typesE,axiom,
! [Ta1: type,Ts: list(dB),Ib: nat,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,foldl(dB,dB,app,var(Ib),Ts)),Ta1))
=> ~ ! [Ts1: list(type)] :
( pp(aa(type,bool,typing(Eb,var(Ib)),foldr(type,type,fun1,Ts1,Ta1)))
=> ~ pp(aa(list(type),bool,typings(Eb,Ts),Ts1)) ) ) ).
tff(fact_64_var__app__types,axiom,
! [Ua: type,Tsa: list(type),Ta1: type,Us1: list(dB),Ts: list(dB),Ib: nat,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,foldl(dB,dB,app,foldl(dB,dB,app,var(Ib),Ts),Us1)),Ta1))
=> ( pp(aa(list(type),bool,typings(Eb,Ts),Tsa))
=> ( pp(aa(type,bool,typing(Eb,foldl(dB,dB,app,var(Ib),Ts)),Ua))
=> ? [Us2: list(type)] :
( ( Ua = foldr(type,type,fun1,Us2,Ta1) )
& pp(aa(list(type),bool,typings(Eb,Us1),Us2)) ) ) ) ) ).
tff(fact_65_Var__apps__eq__Var__apps__conv,axiom,
! [Ss: list(dB),Na: nat,Rsa: list(dB),M: nat] :
( ( foldl(dB,dB,app,var(M),Rsa) = foldl(dB,dB,app,var(Na),Ss) )
<=> ( ( M = Na )
& ( Rsa = Ss ) ) ) ).
tff(fact_66_apps__eq__tail__conv,axiom,
! [S: dB,Ts: list(dB),R1: dB] :
( ( foldl(dB,dB,app,R1,Ts) = foldl(dB,dB,app,S,Ts) )
<=> ( R1 = S ) ) ).
tff(fact_67_list__app__typeE,axiom,
! [Ta1: type,Ts: list(dB),Ta: dB,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,foldl(dB,dB,app,Ta,Ts)),Ta1))
=> ~ ! [Ts1: list(type)] :
( pp(aa(type,bool,typing(Eb,Ta),foldr(type,type,fun1,Ts1,Ta1)))
=> ~ pp(aa(list(type),bool,typings(Eb,Ts),Ts1)) ) ) ).
tff(fact_68_list__app__typeD,axiom,
! [Ta1: type,Ts: list(dB),Ta: dB,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,foldl(dB,dB,app,Ta,Ts)),Ta1))
=> ? [Ts1: list(type)] :
( pp(aa(type,bool,typing(Eb,Ta),foldr(type,type,fun1,Ts1,Ta1)))
& pp(aa(list(type),bool,typings(Eb,Ts),Ts1)) ) ) ).
tff(fact_69_Abs,axiom,
! [Ua: type,Ta: dB,Ta1: type,Env: fun(nat,type)] :
( pp(aa(type,bool,typing(shift(type,Env,zero_zero(nat),Ta1),Ta),Ua))
=> pp(aa(type,bool,typing(Env,abs(Ta)),aa(type,type,aa(type,fun(type,type),fun1,Ta1),Ua))) ) ).
tff(fact_70_dB_Osimps_I3_J,axiom,
! [DB4: dB,DB3: dB] :
( ( abs(DB3) = abs(DB4) )
<=> ( DB3 = DB4 ) ) ).
tff(fact_71_Abs__apps__eq__Abs__apps__conv,axiom,
! [Ss: list(dB),S: dB,Rsa: list(dB),R1: dB] :
( ( foldl(dB,dB,app,abs(R1),Rsa) = foldl(dB,dB,app,abs(S),Ss) )
<=> ( ( R1 = S )
& ( Rsa = Ss ) ) ) ).
tff(fact_72_dB_Osimps_I6_J,axiom,
! [DB: dB,Nat: nat] : ( var(Nat) != abs(DB) ) ).
tff(fact_73_dB_Osimps_I7_J,axiom,
! [Nat: nat,DB: dB] : ( abs(DB) != var(Nat) ) ).
tff(fact_74_ext,axiom,
! [B: $tType,A: $tType,G: fun(A,B),F: fun(A,B)] :
( ! [X1: A] : ( aa(A,B,F,X1) = aa(A,B,G,X1) )
=> ( F = G ) ) ).
tff(fact_75_dB_Osimps_I8_J,axiom,
! [DB: dB,DB2: dB,DB1: dB] : ( aa(dB,dB,aa(dB,fun(dB,dB),app,DB1),DB2) != abs(DB) ) ).
tff(fact_76_dB_Osimps_I9_J,axiom,
! [DB2: dB,DB1: dB,DB: dB] : ( abs(DB) != aa(dB,dB,aa(dB,fun(dB,dB),app,DB1),DB2) ) ).
tff(fact_77_Abs__App__neq__Var__apps,axiom,
! [Ss: list(dB),Na: nat,Ta: dB,S: dB] : ( aa(dB,dB,aa(dB,fun(dB,dB),app,abs(S)),Ta) != foldl(dB,dB,app,var(Na),Ss) ) ).
tff(fact_78_Var__apps__neq__Abs__apps,axiom,
! [Ss: list(dB),R1: dB,Ts: list(dB),Na: nat] : ( foldl(dB,dB,app,var(Na),Ts) != foldl(dB,dB,app,abs(R1),Ss) ) ).
tff(fact_79_Beta,axiom,
! [Ss: list(dB),S: dB,R1: dB] :
( pp(aa(dB,bool,it,foldl(dB,dB,app,subst(R1,S,zero_zero(nat)),Ss)))
=> ( pp(aa(dB,bool,it,S))
=> pp(aa(dB,bool,it,foldl(dB,dB,app,aa(dB,dB,aa(dB,fun(dB,dB),app,abs(R1)),S),Ss))) ) ) ).
tff(fact_80_typing__elims_I3_J,axiom,
! [Ta1: type,Ta: dB,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,abs(Ta)),Ta1))
=> ~ ! [T3: type,U2: type] :
( ( Ta1 = aa(type,type,aa(type,fun(type,type),fun1,T3),U2) )
=> ~ pp(aa(type,bool,typing(shift(type,Eb,zero_zero(nat),T3),Ta),U2)) ) ) ).
tff(fact_81_Lambda,axiom,
! [R3: dB] :
( pp(aa(dB,bool,it,R3))
=> pp(aa(dB,bool,it,abs(R3))) ) ).
tff(fact_82_abs__typeE,axiom,
! [Ta1: type,Ta: dB,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,abs(Ta)),Ta1))
=> ~ ! [U2: type,V: type] : ~ pp(aa(type,bool,typing(shift(type,Eb,zero_zero(nat),U2),Ta),V)) ) ).
tff(fact_83_IT_OVar,axiom,
! [Na: nat,Rsa: list(dB)] :
( listsp(dB,it,Rsa)
=> pp(aa(dB,bool,it,foldl(dB,dB,app,var(Na),Rsa))) ) ).
tff(fact_84_listsp__conj__eq,axiom,
! [A: $tType,B1: fun(A,bool),A1: fun(A,bool),X: list(A)] :
( listsp(A,combs(A,bool,bool,aa(fun(A,bool),fun(A,fun(bool,bool)),aa(fun(bool,fun(bool,bool)),fun(fun(A,bool),fun(A,fun(bool,bool))),combb(bool,fun(bool,bool),A),fconj),A1),B1),X)
<=> ( listsp(A,A1,X)
& listsp(A,B1,X) ) ) ).
tff(fact_85_IT_Osimps,axiom,
! [Aa: dB] :
( pp(aa(dB,bool,it,Aa))
<=> ( ? [Rs1: list(dB),N: nat] :
( ( Aa = foldl(dB,dB,app,var(N),Rs1) )
& listsp(dB,it,Rs1) )
| ? [R4: dB] :
( ( Aa = abs(R4) )
& pp(aa(dB,bool,it,R4)) )
| ? [R4: dB,S3: dB,Ss1: list(dB)] :
( ( Aa = foldl(dB,dB,app,aa(dB,dB,aa(dB,fun(dB,dB),app,abs(R4)),S3),Ss1) )
& pp(aa(dB,bool,it,foldl(dB,dB,app,subst(R4,S3,zero_zero(nat)),Ss1)))
& pp(aa(dB,bool,it,S3)) ) ) ) ).
tff(fact_86_beta,axiom,
! [T1: dB,S1: dB] : pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,aa(dB,dB,aa(dB,fun(dB,dB),app,abs(S1)),T1)),subst(S1,T1,zero_zero(nat)))) ).
tff(fact_87_appL,axiom,
! [U1: dB,T1: dB,S1: dB] :
( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,S1),T1))
=> pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,aa(dB,dB,aa(dB,fun(dB,dB),app,S1),U1)),aa(dB,dB,aa(dB,fun(dB,dB),app,T1),U1))) ) ).
tff(fact_88_appR,axiom,
! [U1: dB,T1: dB,S1: dB] :
( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,S1),T1))
=> pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,aa(dB,dB,aa(dB,fun(dB,dB),app,U1),S1)),aa(dB,dB,aa(dB,fun(dB,dB),app,U1),T1))) ) ).
tff(fact_89_beta__cases_I1_J,axiom,
! [T1: dB,I: nat] : ~ pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,var(I)),T1)) ).
tff(fact_90_abs,axiom,
! [T1: dB,S1: dB] :
( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,S1),T1))
=> pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,abs(S1)),abs(T1))) ) ).
tff(fact_91_subject__reduction,axiom,
! [T2: dB,Ta1: type,Ta: dB,Eb: fun(nat,type)] :
( pp(aa(type,bool,typing(Eb,Ta),Ta1))
=> ( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,Ta),T2))
=> pp(aa(type,bool,typing(Eb,T2),Ta1)) ) ) ).
tff(fact_92_subst__preserves__beta,axiom,
! [I: nat,T1: dB,S1: dB,R3: dB] :
( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,R3),S1))
=> pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,subst(R3,T1,I)),subst(S1,T1,I))) ) ).
tff(fact_93_lift__preserves__beta,axiom,
! [I: nat,S1: dB,R3: dB] :
( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,R3),S1))
=> pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,lift(R3,I)),lift(S1,I))) ) ).
tff(fact_94_beta__cases_I2_J,axiom,
! [S1: dB,R3: dB] :
( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,abs(R3)),S1))
=> ~ ! [T: dB] :
( ( S1 = abs(T) )
=> ~ pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,R3),T)) ) ) ).
tff(fact_95_apps__preserves__beta,axiom,
! [Ss: list(dB),S: dB,R1: dB] :
( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,R1),S))
=> pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,foldl(dB,dB,app,R1,Ss)),foldl(dB,dB,app,S,Ss))) ) ).
tff(fact_96_beta__cases_I3_J,axiom,
! [U1: dB,T1: dB,S1: dB] :
( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,aa(dB,dB,aa(dB,fun(dB,dB),app,S1),T1)),U1))
=> ( ! [S2: dB] :
( ( U1 = subst(S2,T1,zero_zero(nat)) )
=> ( S1 != abs(S2) ) )
=> ( ! [T: dB] :
( ( U1 = aa(dB,dB,aa(dB,fun(dB,dB),app,T),T1) )
=> ~ pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,S1),T)) )
=> ~ ! [T: dB] :
( ( U1 = aa(dB,dB,aa(dB,fun(dB,dB),app,S1),T) )
=> ~ pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,T1),T)) ) ) ) ) ).
tff(fact_97_apps__betasE,axiom,
! [S: dB,Rsa: list(dB),R1: dB] :
( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,foldl(dB,dB,app,R1,Rsa)),S))
=> ( ! [R2: dB] :
( pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,R1),R2))
=> ( S != foldl(dB,dB,app,R2,Rsa) ) )
=> ( ! [Rs: list(dB)] :
( step1(dB,beta,Rsa,Rs)
=> ( S != foldl(dB,dB,app,R1,Rs) ) )
=> ~ ! [T: dB] :
( ( R1 = abs(T) )
=> ! [U: dB,Us: list(dB)] :
( ( Rsa = cons(dB,U,Us) )
=> ( S != foldl(dB,dB,app,subst(T,U,zero_zero(nat)),Us) ) ) ) ) ) ) ).
tff(fact_98_apps__preserves__betas,axiom,
! [R1: dB,Ss: list(dB),Rsa: list(dB)] :
( step1(dB,beta,Rsa,Ss)
=> pp(aa(dB,bool,aa(dB,fun(dB,bool),beta,foldl(dB,dB,app,R1,Rsa)),foldl(dB,dB,app,R1,Ss))) ) ).
%----Arities (1)
tff(arity_Nat_Onat___Groups_Ozero,axiom,
zero(nat) ).
%----Helper facts (12)
tff(help_pp_1_1_U,axiom,
~ pp(fFalse) ).
tff(help_pp_2_1_U,axiom,
pp(fTrue) ).
tff(help_COMBB_1_1_U,axiom,
! [C: $tType,B: $tType,A: $tType,R: A,Q: fun(A,B),P: fun(B,C)] : ( aa(A,C,aa(fun(A,B),fun(A,C),aa(fun(B,C),fun(fun(A,B),fun(A,C)),combb(B,C,A),P),Q),R) = aa(B,C,P,aa(A,B,Q,R)) ) ).
tff(help_COMBC_1_1_U,axiom,
! [A: $tType,C: $tType,B: $tType,R: A,Q: B,P: fun(A,fun(B,C))] : ( aa(A,C,combc(A,B,C,P,Q),R) = aa(B,C,aa(A,fun(B,C),P,R),Q) ) ).
tff(help_COMBS_1_1_U,axiom,
! [C: $tType,B: $tType,A: $tType,R: A,Q: fun(A,B),P: fun(A,fun(B,C))] : ( aa(A,C,combs(A,B,C,P,Q),R) = aa(B,C,aa(A,fun(B,C),P,R),aa(A,B,Q,R)) ) ).
tff(help_fTrue_1_1_U,axiom,
pp(fTrue) ).
tff(help_fTrue_1_1_T,axiom,
! [P: bool] :
( ( P = fTrue )
| ( P = fFalse ) ) ).
tff(help_fconj_1_1_U,axiom,
! [Q: bool,P: bool] :
( ~ pp(P)
| ~ pp(Q)
| pp(aa(bool,bool,aa(bool,fun(bool,bool),fconj,P),Q)) ) ).
tff(help_fconj_2_1_U,axiom,
! [Q: bool,P: bool] :
( ~ pp(aa(bool,bool,aa(bool,fun(bool,bool),fconj,P),Q))
| pp(P) ) ).
tff(help_fconj_3_1_U,axiom,
! [Q: bool,P: bool] :
( ~ pp(aa(bool,bool,aa(bool,fun(bool,bool),fconj,P),Q))
| pp(Q) ) ).
tff(help_fFalse_1_1_U,axiom,
~ pp(fFalse) ).
tff(help_fFalse_1_1_T,axiom,
! [P: bool] :
( ( P = fTrue )
| ( P = fFalse ) ) ).
%----Conjectures (1)
tff(conj_0,conjecture,
pp(aa(type,bool,typing(shift(type,e,zero_zero(nat),t),var(zero_zero(nat))),t)) ).
%------------------------------------------------------------------------------