TPTP Problem File: LCL744-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL744-1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Logic Calculi
% Problem : Strong normalization of typed lambda calculus 019_3
% Version : Especial.
% English :
% Refs : [vON99] von Oheimb & Nipkow (1999), Machine-Checking the Java
% : [Nip10] Nipkow (2010), Email to Geoff Sutcliffe
% : [BN10] Boehme & Nipkow (2010), Sledgehammer: Judgement Day
% Source : [Nip10]
% Names : StrongNorm-019_3 [Nip10]
% Status : Unsatisfiable
% Rating : 1.00 v4.1.0
% Syntax : Number of clauses : 19 ( 8 unt; 0 nHn; 11 RR)
% Number of literals : 30 ( 12 equ; 14 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 9 ( 9 usr; 3 con; 0-3 aty)
% Number of variables : 48 ( 11 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%------------------------------------------------------------------------------
cnf(cls_abs_0,axiom,
( c_Lambda_Obeta(c_Lambda_OdB_OAbs(V_s),c_Lambda_OdB_OAbs(V_t))
| ~ c_Lambda_Obeta(V_s,V_t) ) ).
cnf(cls_beta__cases_I2_J_0,axiom,
( V_s = c_Lambda_OdB_OAbs(c_Lambda_Osko__Lambda__Xbeta__cases__2__1(V_r,V_s))
| ~ c_Lambda_Obeta(c_Lambda_OdB_OAbs(V_r),V_s) ) ).
cnf(cls_appL_0,axiom,
( c_Lambda_Obeta(c_Lambda_OdB_OApp(V_s,V_u),c_Lambda_OdB_OApp(V_t,V_u))
| ~ c_Lambda_Obeta(V_s,V_t) ) ).
cnf(cls_appR_0,axiom,
( c_Lambda_Obeta(c_Lambda_OdB_OApp(V_u,V_s),c_Lambda_OdB_OApp(V_u,V_t))
| ~ c_Lambda_Obeta(V_s,V_t) ) ).
cnf(cls_subst__preserves__beta_0,axiom,
( c_Lambda_Obeta(c_Lambda_Osubst(V_r,V_t,V_i),c_Lambda_Osubst(V_s,V_t,V_i))
| ~ c_Lambda_Obeta(V_r,V_s) ) ).
cnf(cls_dB_Osimps_I3_J_0,axiom,
( c_Lambda_OdB_OAbs(V_dB) != c_Lambda_OdB_OAbs(V_dB_H)
| V_dB = V_dB_H ) ).
cnf(cls_beta_0,axiom,
c_Lambda_Obeta(c_Lambda_OdB_OApp(c_Lambda_OdB_OAbs(V_s),V_t),c_Lambda_Osubst(V_s,V_t,c_HOL_Ozero__class_Ozero(tc_nat))) ).
cnf(cls_dB_Osimps_I2_J_1,axiom,
( c_Lambda_OdB_OApp(V_dB1,V_dB2) != c_Lambda_OdB_OApp(V_dB1_H,V_dB2_H)
| V_dB2 = V_dB2_H ) ).
cnf(cls_dB_Osimps_I2_J_0,axiom,
( c_Lambda_OdB_OApp(V_dB1,V_dB2) != c_Lambda_OdB_OApp(V_dB1_H,V_dB2_H)
| V_dB1 = V_dB1_H ) ).
cnf(cls_beta__cases_I2_J_1,axiom,
( c_Lambda_Obeta(V_r,c_Lambda_Osko__Lambda__Xbeta__cases__2__1(V_r,V_s))
| ~ c_Lambda_Obeta(c_Lambda_OdB_OAbs(V_r),V_s) ) ).
cnf(cls_dB_Osimps_I9_J_0,axiom,
c_Lambda_OdB_OAbs(V_dB_H) != c_Lambda_OdB_OApp(V_dB1,V_dB2) ).
cnf(cls_dB_Osimps_I8_J_0,axiom,
c_Lambda_OdB_OApp(V_dB1,V_dB2) != c_Lambda_OdB_OAbs(V_dB_H) ).
cnf(cls_subst__App_0,axiom,
c_Lambda_Osubst(c_Lambda_OdB_OApp(V_t,V_u),V_s,V_k) = c_Lambda_OdB_OApp(c_Lambda_Osubst(V_t,V_s,V_k),c_Lambda_Osubst(V_u,V_s,V_k)) ).
cnf(cls_lift_Osimps_I2_J_0,axiom,
c_Lambda_Olift(c_Lambda_OdB_OApp(V_s,V_t),V_k) = c_Lambda_OdB_OApp(c_Lambda_Olift(V_s,V_k),c_Lambda_Olift(V_t,V_k)) ).
cnf(cls_Lambda_0,axiom,
( c_InductTermi_OIT(c_Lambda_OdB_OAbs(V_r))
| ~ c_InductTermi_OIT(V_r) ) ).
cnf(cls_subst__lift_0,axiom,
c_Lambda_Osubst(c_Lambda_Olift(V_t,V_k),V_s,V_k) = V_t ).
cnf(cls_lift__preserves__beta_0,axiom,
( c_Lambda_Obeta(c_Lambda_Olift(V_r,V_i),c_Lambda_Olift(V_s,V_i))
| ~ c_Lambda_Obeta(V_r,V_s) ) ).
cnf(cls_conjecture_0,negated_conjecture,
c_InductTermi_OIT(v_t) ).
cnf(cls_conjecture_1,negated_conjecture,
~ c_InductTermi_OIT(c_Lambda_Olift(v_t,v_i)) ).
%------------------------------------------------------------------------------